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Negative Stain Image of “2D-Crystal”

To grasp the basic ideas underlying electron crystallographic image
processing, all we need to ask is: how can we describe a periodic array
without using the actual picture itself?
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The regularity of the crystal “lattice” is reflected in a “repeat” in the OD-pattern.
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However: the repeats are not precisely the
same due to noise, low-dose conditions, and
irregularities in the lattice (= lattice disorder).
Nevertheless, the periodic nature of the OD-
pattern begins to provide clues how these data
structure can be exploited.

0

1

2

3

4

TARGET FUNCTION

2D-crystals present us with the easiest
approach towards structure because the
Fourier Theorem states that any periodic
function can be described as the sum of a
series of sinusoidal functions of wavelengths
that are integral fractions of a single basic
wavelength !.
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In other words: the FT of a 2D-crystal will be discrete and if we know the “recipe”
for building one single unit cell of the periodic array (e.g. the grey part of the
function shown above), then we know the structure of the entire crystal.

0

0.5

1

1.5

2

2.5

3

3.5

4

X

first component: constant

Amp = 2
phase: any

0

0.5

1

1.5

2

2.5

3

3.5

4

X

sum after adding first component

Amp = 2
phase: any

0

1

2

3

4
component 1+2
= 2 + cos x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

second component: cos x

Amp =1
Phase = 0˚

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

third component: cos 2x

Amp = 0.7
Phase = 0˚

0

1

2

3

4

components 1+2+3

2+ cos x + 0.7 * cos 2x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

sixth component: cos 5x

Amp = 0.5
Phase = 90˚

0

1

2

3

4

sum of all six components = TARGET

0

1

2

3

4
2+ cos x + 0.7*cos 2x + 0.1*cos (3x-135)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

fourth component: cos 3x

Amp = 0.1
Phase = -135˚

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

fifth component: cos 4x

Amp = 0
Phase = any

Same as
previous
because

Amp = 0 results
in adding 0 to

each point

In principle: the Fourier components and their summation to obtain a real space picture of an object is very similar to
making Lasagna….



To prove the point….

cryoEM picture of a gap junction 2D-
crystal (periodic object) deposited on
continuous carbon support film
(aperiodic object)

Calculated FT of the image. What do
you see? And what is causing it?

a) Spots at regular spacings: diffraction maxima arising from crystal.
b) Alternating pattern of bright and dark regions. This is a combination of two things. (1) the

aperiodic carbon film causes diffraction at all angles, and (2) the oscillation in intensities
is the manifestation of the CTF of the objective lens (not all diffracted waves are transmitted
with the same fidelity)
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Digital Filtering of  Fourier Transform

Radius used was r=1

Digital Filtering of  Fourier Transform

Radius used was r=7
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Autocorrelation Map Part of Crosscorrelation Map

Note that the shape of the central peak in the autocorrelation map is very

similar to the shape of the cross-correlation peaks.



Crosscorrelation Maps

deviation from expected lattice
position [Å] X20 (not to scale) with

respect to chosen reference

height of cross correlation-peaks indicates
how similar each unit cell is to the chosen

reference

Cross-correlation methods can be used to determine translational disorder in
2D-crystals.

Left: data were retrieved from a
calculated FT of an untreated raw
image. In this case, the data are not
statistically significant beyond ~15Å
resolution.

Effect of “Lattice Unbending”

Plot symbols indicate the goodness of each reflection. Reflections marked by a “1”
have a signal-to-noise ratio of at least 8.

Right: after correction for
translational lattice disorder, the
same image provides data out to
~7Å resolution.

15Å 15Å10Å10Å7Å 7Å

The simulated curves are for 3000
and 6000Å of underfocus
respectively, an accelerating
voltage of 200keV (!=0.025Å) and
a Cs=2mm
These lower two panels
demonstrate how the CTF would
look like in the FT of the image.
Circles represent [sin $(")] =0
Frequencies where [sin $(")]<0
contribute with reversed contrast to
the image.  Therefore, the phases
of reflections in these regions need
to be adjusted by 180˚

Now that the data extend to well beyond 10Å, correction for the CTF
becomes critically important.

Because the phase information is so important we now can
understand why in EM we MUST correct for the effect of the
CTF….
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PHASES

Basic Image Processing of 2D-Crystals

(H,K) amp       phase    IQ      CTF

0 1 132.4 237.8  7    -0.142
0 2 5686.9 299.8 1     -0.540
0 3 195 249.1 6     -0.958
0 4 1067.4 246.1 1     -0.762
0 5 431.0 102.5 2      0.397
0 6 1016.5 356.5 1      0.925
0 7 120.5 243.0 6     -0.602
0 8 0.0 270.7 9     -0.388
0 9 145.5 319.4 4      0.923
0 10 67.2 290.6 6     -0.993
0 11 0.0 270.7 9      0.928
1 0 97.7 132.8 8     -0148
1 1 7227.8 140.0 1     -0.423
1 2 2582.2 17.1 1     -0.846
1 3 1460.3 266.5 1     -0.957
And so forth….

REAL SPACE RECIPROCAL SPACE



Now, just do the Fourier Summation and we should be
done…
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(H,K) amp       phase

0 1 132.4 237.8
0 2 5686.9 299.8
0 3 195 249.1
0 4 1067.4 246.1
0 5 431.0 102.5
0 6 1016.5 356.5
0 7 120.5 243.0
0 8 0.0 270.7
0 9 145.5 319.4
0 10 67.2 290.6
0 11 0.0 270.7
1 0 97.7 132.8
1 1 7227.8 140.0
1 2 2582.2 17.1
1 3 1460.3 266.5
And so forth….

What happened!! Did I take a bad image/picture?

1 Unit Cell

Looking at a couple of unit cells together explains everything…….

We calculated a
map in p1 (= no

symmetry), which
works because in

p1 any phase
origin is valid.

What is a phase
origin??

Twofold axis

Threefold axis

Sixfold axis

The presence of symmetry requires the contents of the unit cell to be
positioned such that the crystallographic related molecules have the correct

spatial relation with respect to the symmetry axes……take p6 for instance…..

Remember, p6 symmetry has not been imposed
here….but the more pressing issue is how do we
get from the p1 map we have to a distribution of

densities that looks like above?

The answer  is: by shifting the phases .  Remember, a movement in real
space correlates to a phase shift in reciprocal space

The molecules contoured in green are shifted by 1/2 unit cell (=180 degree shift
applied to the (1,0) reflection) with respect to the molecules contoured in

magenta

THE MATRIX BELOW IS CENTRED ABOUT AN ORIGIN WITH A PHASESHIFT OF

0.00 FOR THE (1,0) REFLECTION

0.00 FOR THE (0,1) REFLECTION
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BEST PHASE SHIFTS ARE

30.00 FOR THE (1,0) REFLECTION

-110.00 FOR THE (0,1) REFLECTION

NOTE THAT THESE SHIFTS INCLUDE THE INITIAL SHIFTS AS WELL AS THE

ADDITIONAL REFINED SHIFTS

PHASE ERROR AT MINIMUM IS 18.5 DEGREES in p6

only one position for sixfold symmetry axis

SPACEGROUP      Phase resid(No) Phase resid(No) OX OY
v.other spots v.theoretical

(90 random) (45 random)

1 p1 14.6   50       10.5 50
2 p2 25.4!   25       12.7 50 -151.3   67.3

     3b p12_b 60.5   11       22.4 6 -68.4 -180.0
     3a p12_a 55.9   11       12.2 6 -180.0 -117.4

4b p121_b 34.6   11       21.1 6 112.4 -120.0
4a p121_a 42.1   11       34.1 6     80.0 151.9

     5b c12_b 60.5   11       22.4 6 -68.4 -180.0
     5a c12_a 55.9   11       12.2 6 -180.0 -117.4

6 p222 40.9   47       12.6 50 -151.4 -112.8
7b p2221b 40.5   47       12.7 50 -151.3   67.1
7a p2221a 63.2   47       19.7    50     21.2 -118.8
8 p22121 30.3   47       12.5    50     28.2 -113.1
9 c222 40.9   47       12.6 50 -151.4 -112.8
10 p4 38.0   49       12.6 50 -151.6 -112.8
11 p422 49.7 107       12.8 50 -151.2 -112.5
12 p4212 51.3 107       12.8    50     28.8 67.6
13 p3 13.5*   40 -- -- -91.5    7.6
14 p312 54.2   95 7.1 10 148.7 127.8
15 p321 48.2   98       52.4 16 149.8 128.2
16 p6 15.4* 105       13.0    50     29.1 -112.2
17 p622 50.7 218       13.1    50     29.2 -112.1

* = acceptable
! = should be considered
` = possibility

Projection Density Map and some of the
Corresponding Structure Factors

Real space map obtained
by Fourier summation

(H,K,L) amp phase FOM
1 0  0 2566 180 99.5
1 1  0 12424 180 99.9
1 2  0 777 180 99.5
1 3  0 1123 0 99.7
1 4  0 208 0 73.9
1 5  0 605 0 99.0
1 6  0 670 180 99.2
1 7  0 250 180 99.6
1 8  0 350 0 94.3
1 9  0 77 180 59.8
1 10 0 140 0 13.3
2 0  0 9265 180 99.9
2 1  0 1971 0 99.8
And so forth…..



Pictures of Tilted Crystals are Required for
3D-Structure Determination

Concept of Lattice Lines and Principle of

Sampling their Data

Taken from:
Amos, Henderson and Unwin (1982), Prog. Biophys Molec Biol 39:183-231

Example for a Lattice Line

This figure shows the variation of
phase (top panel) and amplitude
(bottom) of the (2,5)-reflection of a gap-
junction 2D-crystal as function of z*.

The amplitudes were obtained from the
calculated image transforms. In
contrast to the phase information,
image derived amplitudes are very

noisy mostly because the image is
modulated by the contrast transfer
function of the objective lens (see page
showing the calculated FT of an
image). The effect of the CTF on
amplitudes cannot be fully corrected,
but, on the other hand does not really

matter that much because it is the

phases that determine the structure.
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3D-Map of a Gap-Junction
Intercellular Channel

Shown are a surface representation at
~7.5Å resolution A total of ~42,000

channel molecules were
crystallographically averaged to obtain

this structure.

THE END


