Applying the Automated EM Pipeline: One quarter of a million particles of GroEL per day

Or what do I do with all these data?

Outline

- What are the steps one takes to use automation in practice?
- What are the obstacles one encounters along the way to a reconstruction?

Reconstruction pipeline

- · Data Acquisition
 - Leginon
- · Particle picking
 - Selexon
- CTF estimation
 - ACE
- · Selecting "good" data
 - Database queries
 - _ 222
- Reconstruction

Background

- GroEL has been our driver for developing both automated data collection and automated data analysis
- 150,000 particles/24 hours a year ago
- Over the last year, led to the development of
 - Environment monitoring
 - Database reports
 - Training data for ACE
 - Optimize protocols for single particle reconstruction with EMAN and Frealign
 - Creation of JAHCs grids

Data Acquisition

Automated data acquisition with Leginon

Automated microscope control

Suloway et al. (2005) J. Struct. Biol., In press

How long does it take?

- Setup
 - 1 h on a good day 5 h on a bad day
 - Stability of microscope/problems with specimen
- Acquisition
 - Creating the atlas
 - 15 min
 - Finding holes
 - ~30s for square image
 < 1s for hole image
 - Focusing
 - 10s for algorithm + 5-30s for melting ice
 - Reading and correcting the high-resolution exposures

 • ~30s / exposure

I mage collection statistics

• Defocus pairs: 552

- 50,000X, 2.263 Å/pix, -0.8 to -2.0 μm defocus

- Hundreds of particles per image

• Focus images: 273

- 50.000X

• Holes visited: 318

- 5000X, 179 Å/pix, -150 μm defocus

• Squares visited: 32

- 800X, 558 Å/pix, -2mm defocus

• Total time: 25h

Picking particles

Automated particle picking Selexon ~95% accurate 0 (3) 280,000 particles picked Roseman (2004) JSB, 145 Zhu *et al.* (2004) IEEE ISBI04 conference

How long does it take?

- Setup
 - − Creating templates ←
 - 1-2 hours
 - Setting parameters
 - 30 min
- Automated particle picking
 - -~2 min/micrograph

CTF Estimation

Ace Ace Togy identition and edipon its Output Description Ace Mallick et al. (2005) Ultramicroscopy,104

ACEM AN

- Reads Imagic stacks instead of entire micrographs
- Uses EMAN formulation for noise and envelope
- So far does not include structure factors
 - Structure factors should be implemented w/i a month

How long does it take?

- Setup
 - 1 minute
- Automated CTF estimation
 - − ~1 minute/micrograph
 - Slightly faster with ACEMAN

Database reports

http://cronus3.scripps.edu/dbem/summary.php?expId=1933

The bottom line: How do these parameters affect the reconstruction?

- Can we sort the data in such a way that we focus only on "good" particles?
 - Sort by ice thickness
 - Sort by ACE data
 - Sort by drift
 - Sort by temperature
 - **-** ???

Sorting particles by ice thickness

- · Sorting scheme
 - Throw away any micrograph with ACE confidence value < 0.8 (manually verified that all fits > 0.8 are correct)
 - Take defocus measurements from ACE and sort micrographs into small (0.5-1.0), medium (1.0-1.5), and large (1.5-3.0) defocus sets
 - Sort defocus sets and split into 10 subsets by increasing ice thickness
 - Find set with least ptcls and randomly remove ptcls from other sets until all have same # ptcls (~15,800)
- Result is 10 sets of particles with equivalent range of defoci
- · Reconstruct each set using EMAN

Resolution decreases with increasing ice thickness

FSC of highest resolution structure

Resolution = 9.3Å

The structure of GroEL

Thinnest ice structure

Amplitude corrected via Spider

Sorting particles by ice thickness - amp. corrected

- · Sorting scheme
 - Use ACEMAN to estimate noise and envelope, but use original ACE estimation for defocus
 - Throw away any micrograph with ACE confidence value < 0.8
 - Take defocus measurements from ACE and sort micrographs into small (0.5-1.0), medium (1.0-1.5), and large (1.5-3.0) defocus sets
 - Sort defocus sets and split into 10 subsets by increasing ice thickness
 - Find set with least ptcls and randomly remove ptcls from other sets until all have same # ptcls (~15,800)
- Result is 10 sets of particles with equivalent range of defoci
- · Reconstruct each set using EMAN
 - Apply envelope correction to class averages towards the end of the refinement

FSC of thinnest ice

Resolution = 6.5Å Nyquist = 4.526Å

GroEL at 6.5Å?

Can we get even higher resolution?

- Refine with all 280,000 ptcls
- Average volumes from multiple reconstructions
- What do we do about amplitudes?
- What is the resolution?!!!

Average of all volumes

Volume was amplitude corrected via Spider

Average of all volumes

H.264 decompressor are needed to see this pictur

What is the resolution?

Resolution (FSC_{0.5}) = 10.2Å

Acknowledgments

- Leginon
 - Denis Fellman

 - Jim PulokasChristian SulowayJoel QuispeAnchi Cheng
- ACE
- Satya Mallick Selexon
 - Yuanxin ZhuAlan Roseman

