Applying the Automated EM Pipeline: One quarter of a million particles of GroEL per day

Or what do I do with all these data?

Outline

- What are the steps one takes to use automation in practice?
- What are the obstacles one encounters along the way to a reconstruction?

Reconstruction pipeline

- Data Acquisition
 - Leginon
- Particle picking
 - Selexon
- CTF estimation
 - ACE
- Selecting "good" data
 - Database queries
 - ???
- Reconstruction

Background

- GroEL has been our driver for developing both automated data collection and automated data analysis
- 150,000 particles/24 hours a year ago
- Over the last year, led to the development of
 - Environment monitoring
 - Database reports
 - Training data for ACE
 - Optimize protocols for single particle reconstruction with EMAN and Frealign
 - Creation of JAHCs grids

Data Acquisition

Automated data acquisition with Leginon

Automated microscope control

Multiscale I maging

Suloway et al. (2005) J. Struct. Biol., In press.

How long does it take?

- Setup
 - 1 h on a good day 5 h on a bad day
 - Stability of microscope/problems with specimen
- Acquisition
 - Creating the atlas
 - 15 min
 - Finding holes
 - ~30s for square image
 - < 1s for hole image
 - Focusing
 - 10s for algorithm + 5-30s for melting ice
 - Reading and correcting the high-resolution exposures
 - ~30s / exposure

I mage collection statistics

- Defocus pairs: 552
 - 50,000X, 2.263 Å/pix, -0.8 to -2.0 μm defocus
 - Hundreds of particles per image
- Focus images: 273
 - 50,000X
- Holes visited: 318
 - 5000X, 179 Å/pix, -150 μm defocus
- Squares visited: 32
 - 800X, 558 Å/pix, -2mm defocus
- Total time: 25h

Picking particles

Automated particle picking Selexon

~95% accurate

280,000 particles picked

Roseman (2004) JSB, 145 Zhu *et al.* (2004) IEEE ISBI04 conference

How long does it take?

- Setup
 - Creating templates ↔
 - 1-2 hours

- Setting parameters
 - 30 min
- Automated particle picking
 - ~2 min/micrograph

CTF Estimation

Automated CTF estimation

ACE

Mallick et al. (2005) Ultramicroscopy, 104

ACEMAN

- Reads Imagic stacks instead of entire micrographs
- Uses EMAN formulation for noise and envelope
- So far does not include structure factors
 - Structure factors should be implemented w/i a month

ACEMAN

How long does it take?

- Setup
 - 1 minute
- Automated CTF estimation
 - ~1 minute/micrograph
 - Slightly faster with ACEMAN

Database reports

http://cronus3.scripps.edu/dbem/summary.php?expId=1933

The bottom line: How do these parameters affect the reconstruction?

- Can we sort the data in such a way that we focus only on "good" particles?
 - Sort by ice thickness
 - Sort by ACE data
 - Sort by drift
 - Sort by temperature
 - ???

Sorting particles by ice thickness

- Sorting scheme
 - Throw away any micrograph with ACE confidence value < 0.8 (manually verified that all fits > 0.8 are correct)
 - Take defocus measurements from ACE and sort micrographs into small (0.5-1.0), medium (1.0-1.5), and large (1.5-3.0) defocus sets
 - Sort defocus sets and split into 10 subsets by increasing ice thickness
 - Find set with least ptcls and randomly remove ptcls from other sets until all have same # ptcls (~15,800)
- Result is 10 sets of particles with equivalent range of defoci
- Reconstruct each set using EMAN

Resolution decreases with increasing ice thickness

Resolution vs. Ice thickness

FSC of highest resolution structure

Resolution = 9.3Å

The structure of GroEL

Thinnest ice structure

Amplitude corrected via Spider

Sorting particles by ice thickness amp. corrected

- Sorting scheme
 - Use ACEMAN to estimate noise and envelope, but use original ACE estimation for defocus
 - Throw away any micrograph with ACE confidence value < 0.8
 - Take defocus measurements from ACE and sort micrographs into small (0.5-1.0), medium (1.0-1.5), and large (1.5-3.0) defocus sets
 - Sort defocus sets and split into 10 subsets by increasing ice thickness
 - Find set with least ptcls and randomly remove ptcls from other sets until all have same # ptcls (~15,800)
- Result is 10 sets of particles with equivalent range of defoci
- Reconstruct each set using EMAN
 - Apply envelope correction to class averages towards the end of the refinement

FSC of thinnest ice

Resolution = 6.5Å Nyquist = 4.526Å

GroEL at 6.5Å?

Can we get even higher resolution?

- Refine with all 280,000 ptcls
- Average volumes from multiple reconstructions
- What do we do about amplitudes?
- What is the resolution?!!!

Average of all volumes

Volume was amplitude corrected via Spider

Average of all volumes

QuickTime™ and a H.264 decompressor are needed to see this picture.

What is the resolution?

Resolution (FSC_{0.5}) = 10.2Å

Comparison with 6.5Å

Amplitude corrected during refinement

Average of 10 volumes

6.5Å?

10.2Å?

The pipeline in action

Acknowledgments

- Leginon
 - Denis Fellman
 - Jim Pulokas
 - Christian Suloway
 - Joel Quispe
 - Anchi Cheng
- ACE
 - Satya Mallick
- Selexon
 - Yuanxin Zhu
 - Alan Roseman

