# Fitting high resolution structures into low resolution EM maps

# **Michael Rossmann**

**Purdue University** 

#### **Fitting Processes**

- 1. Map scaling
- 2 Symmetry constraints
- 3. Fitting criteria
  - a. fit of atoms into density
  - b. avoiding negative density
  - c. steric hindrance, inter atomic clashes
  - d. restraints imposed by known structural features
- 4. Combining different criteria
  - a. normalization of each measurement
- 5. The search processa. rotational searchb.multi-dimensional "climb" or least squares
- 6. Verification
  - a. hand of map
  - b. subunit contacts
- 7. Problems
  - a. symmetry missmatches
  - b. unknown structural components
  - c. uninterpreted density

#### **Map Scaling**

Minimize  $\Sigma [\rho_1(x_1, y_1, z_1) - (a + b \rho_2(x_2, y_2, z_2))]^2$ where  $\rho_1$  is the reference map (e.g. X-ray virus map) and  $\rho_2$  is the map of interest (e.g. virus plus ligand complex) And  $x_1 = x_2 + \delta x_2$ ,  $y_1 = y_2 + \delta y_2$ ,  $z_1 = z_2 + \delta z_2$ Requiring interpolation for determinin  $\rho_2$ 

Or maximize the correlation C, where C=  $[\Sigma(<\rho_1> - \rho_1)(<\rho_2> - \rho_2)] / [\Sigma(<\rho_1> - \rho_1)^2] [\Sigma(<\rho_2> - \rho_2)^2]$ 

Comparison of the PV1:CD155 EM map with the PV1 X-ray map:

| Shell radius (Å)                     | 108 - 120 | 120 - 132 | 132 - 144 | 144 - 156 |
|--------------------------------------|-----------|-----------|-----------|-----------|
| Number of Pixels*                    | 3,918     | 22,203    | 17,914    | 3,424     |
| Correlation Coefficient <sup>†</sup> | 0.1881    | 0.2662    | 0.9105    | 0.9860    |



#### Determination of EM magnification

## **Symmetry Constraints**

Let the atomic positions of a model be given by (X,Y,Z), or, in vector notation, by **X**, in an orthogonal coordinate system. Let the origin of the model (defined by its center of mass) be at **S**. Let the rotation matrix required to place the model into the "reference" EM density be [*E*], Then

 $\mathbf{X'} = [E]\mathbf{X} + \mathbf{d},$ 

where **X'** are the coordinates of the model atoms in the EM map and **d** is a translation vector.

Let S' be the approximate target position in the EM map for placement of the model's origin. Then

$$\mathbf{S'} = [E]\mathbf{S} + \mathbf{d}$$

and, hence,

$$\mathbf{d} = \mathbf{S'} - [E]\mathbf{S}$$

or

$$\mathbf{X'} = [E](\mathbf{X} - \mathbf{S}) + \mathbf{S'} \ .$$

Let the reference molecule be reproduced by M "crystallographic" and T "NCS" symmetry operations given by  $[R_m]$  (m = 1, M and t=1, T). Thus  $\mathbf{X}^{\bullet \bullet} = [R_{m,t}]\mathbf{X}^{\bullet}$ And hence using  $\mathbf{X}^{\bullet} = [E](\mathbf{X} - \mathbf{S}) + \mathbf{S}^{\bullet}$ It follows that



Sindbis Virus M=60 icosahedral operators T=4 quasi symmetry NCS operators

## **Fitting criteria**

a. fit over N atoms into density  $sumf = 100.\Sigma (\Sigma \rho(X'') / TN\rho_{norm})$ T N

where  $\rho_{norm}$  is either the maximum or rms density

- b. The number of atoms (N') in negative density, expressed as a % -den =  $100.\Sigma_{T}$  (N') / TN
- c. The number of atoms (N'') that approach atoms in another molecule to within 3.4A, expressed as a %.  $clash = 100.\Sigma$  (N'') / TN
- d. The average or rms distance between L specific fixed points ( $R_i$ ) in the map and specific atoms on the molecule ( $X''_i$ ) (e.g. Carbohydrate moities in the map and corresponding aas). avgdist =  $\Sigma |(R_i - X''_i)| / L_L$



Fitting the E1 protein of Sindbis virus : Using carbohydrate sites as restraints

W.Zhang et al, J.Virol, 2002, 76, 11645-11658

# **Use of Restraints**

- Minimizing the distance between recognizable features in the cryoEM map and the associated atomic Group of the molecule being fitted
- 2. Restraining the molecule being placed in a map to use a specific contact region to other parts of the structure
- 3. Keeping a short distance between the C-end of one domain and the N-end of the next, independently fitted, domain.

# **Combining different criteria**

$$\mathbf{R}_{\text{crit}} = \Sigma \,\omega_i \mathbf{s}_i \left[ \left( \mathbf{v}_i - \langle \mathbf{v}_i \rangle \right) / \,\sigma(\mathbf{v}_i) \right] / \,\Sigma \omega_i$$

Where  $v_i$  is the value of the ith criterion,

 $\langle v_i \rangle$  is the standard deviation of  $v_i$  taken over a set of randomly oriented molecular fits into the density,

 $\omega_i$  is the weight (usually 1.0) to be placed on the given criterion and

s<sub>i</sub> is +1.0 if the criterion is to be maximized (e.g. *sumf*) or -1.0 if the criterion is to be minimized (e.g. *-den*, *clash*  Fitting the E1 protein of Sindbis virus. The top 25 best fit converge to only 4 different fits on refinement

## a. Values of criteria

| Fit No | R <sub>crit</sub> | sumf | clash | -den | avgdist Å |
|--------|-------------------|------|-------|------|-----------|
| 13     | 0.98              | 39.3 | 0.5   | 9.2  | 21.9      |
| 10     | 0.81              | 37.3 | 2.2   | 10.1 | 20.5      |
| 14     | 0.26              | 36.3 | 3.7   | 11.9 | 21.2      |
| 25     | -2.37             | 39.2 | 17.5  | 10.1 | 28.7      |

b. Criteria expressed as the number of  $\sigma$  above mean

| Fit No | R <sub>crit</sub> | sumf | clash  | -den | avgdist |
|--------|-------------------|------|--------|------|---------|
| 13     | 0.98              | 2.38 | 0.19   | 1.52 | 0.93    |
| 10     | 0.81              | 1.40 | -1.35  | 1.18 | 1.48    |
| 14     | 0.26              | 0.48 | -2.78  | 0.42 | 1.22    |
| 25     | -2.37             | 2.32 | -23.10 | 1.15 | -1.67   |

## The search process

2. Explore all unique values of the three Eulerian angles that define the [E] rotation matrix, using fairly large angular intervals

 $0 \leq \theta_1 < 2\pi; \qquad 0 \leq \theta_2 \leq \pi, \qquad 0 \leq \theta_3 < 2\pi$ 

- 2. Rank according to sumf
- 3. Use results for determining the mean and standard deviation ( $\sigma$ ) for each criterion required to calculate R<sub>crit</sub>.
- 4. Refine the top n (e.g. 100) best fits by a six dimensional "climb" on R<sub>crit</sub>, using fine angular and positional intervals.
- 5. Eliminate all but one of closely similar fits, leaving only distinctly different fits.
- Note: fitting more than one rigid body at a time can be done sequentially and refined by least squares

# **Refine using "Climb"** R<sub>crit</sub> values at end of climb Refining the placement of the E1 glycoprotein Into Sindbis virus cryoEM density

param  $\xi - \Delta \xi$   $\xi$   $\xi + \Delta \xi$   $\xi$   $\Delta \xi$   $\theta_1$  1.016 1.029 1.022 357.0 0.25  $\theta_2$  1.008 1.029 1.026 40.5 0.25  $\theta_3$  1.021 1.029 1.021 193.5 0.25 x 0.996 1.029 1.011 23.9 0.50 y 1.028 1.029 0.990 68.3 0.50 z 0.963 1.029 1.015 284.5 0.50 The E glycoprotein dimer of flaviviruses : Sequential fitting into the mature dengue EM map



TBEV: F. Rey et al Nature, 1995, 375, 291-298
Dengue: Y. Modis et al PNAS, 2003, 100, 6986-6991
Y. Zhang et al, Structure 2004, 22, 2604-2613



![](_page_15_Figure_0.jpeg)

![](_page_16_Figure_0.jpeg)

![](_page_17_Picture_0.jpeg)

![](_page_18_Picture_0.jpeg)

## The E glcoprotein monomer of flaviviruses : Sequential fitting into the immature dengue virus map

![](_page_19_Figure_1.jpeg)

## Sequential fitting of E monomer into the immature Dengue cryoEM map Results are independent of order of fitting

|   |                 | $S\mathcal{U}$ | mf s | umf  | sumf |      |       |      |      |       |    |    |
|---|-----------------|----------------|------|------|------|------|-------|------|------|-------|----|----|
| ] | MOL             | Γ              | DI   | DII  | DIII | Х    |       | У    | Ζ    | θ1    | θ2 | θ3 |
| Α | 1 <sup>st</sup> | 50.8           | 55.8 | 42.3 | 32.0 | -7.7 | 220.9 | 15.0 | 61.0 | 349.2 |    |    |
| Α | $2^{nd}$        | 49.7           | 56.4 | 44.0 | 31.0 | -6.7 | 221.4 | 11.0 | 61.5 | 345.0 |    |    |
| Α | 3 <sup>rd</sup> | 50.9           | 56.0 | 40.5 | 31.5 | -6.7 | 220.4 | 10.8 | 61.5 | 355.2 |    |    |
|   |                 |                |      |      |      |      |       |      |      |       |    |    |
| В | <b>1</b> st     | 48.4           | 57.6 | 42.9 | 72.1 | 8.2  | 210.6 | 38.0 | 64.5 | 162.5 |    |    |
| В | $2^{nd}$        | 49.8           | 57.4 | 41.8 | 71.6 | 8.2  | 210.6 | 34.8 | 63.5 | 164.8 |    |    |
| В | $3^{rd}$        | 49.7           | 57.4 | 41.9 | 72.1 | 7.7  | 210.6 | 37.5 | 64.0 | 163.5 |    |    |
|   |                 |                |      |      |      |      |       |      |      |       |    |    |
| С | <b>1</b> st     | 48.9           | 54.7 | 42.1 | 10.5 | 48.3 | 217.0 | 19.8 | 58.0 | 240.2 |    |    |
| С | $2^{nd}$        | 49.2           | 53.1 | 41.3 | 9.0  | 47.8 | 217.0 | 22.0 | 58.5 | 238.5 |    |    |
| С | $3^{rd}$        | 49.5           | 54.9 | 42.8 | 10.0 | 48.3 | 217.0 | 18.2 | 57.0 | 241,8 |    |    |

# Validation

- 1. Is the hand consistent with each fitted protein?
- 2. Are distances between atoms in the interface reasonable?
- 3. Are the type of residues in the contact region appropriate? Look for: hydrophobic versus hydrophobic charge complimentarity
- 4. Have all the higher density regions been interpreted?
- 5. Do unexpected results make chemical sense?

## Validation: Consistent hand verification of the cryoEM map using T4 phage baseplate proteins

![](_page_22_Figure_1.jpeg)

# Hexagonal conformation (tube-baseplates)

![](_page_23_Picture_1.jpeg)

- Initial model hexagonal prism connected to a tube
- Sixfold symmetry
- 945 particles used in the reconstruction
- Defoci 1.5 3.5 μm
- 12 Å resolution

## Some crystal structures of the baseplate proteins

![](_page_24_Picture_1.jpeg)

![](_page_25_Picture_0.jpeg)

Kostyuchenko et al, Nat. Struct. Biol. 2003, 10:688-693

27 5 26?

# T4 Hand determination: Un-normalized correlation coefficients

| Baseplate pro | tein Cor | rect hand | Incorrect hand |
|---------------|----------|-----------|----------------|
| gp8           | 1.1      | 0.7       |                |
| gp11          | 0.9      | 0.7       |                |
| gp10          | 1.2      | 0.7       |                |
| gp12          | 1.1      | 1.0       |                |

![](_page_27_Figure_0.jpeg)

Validation: Has all of the significant density been interpreted? Original analysis of Dengue Virus Map at 26Å resolution

| height | ratio1 | ratio2 |
|--------|--------|--------|
| -7     |        | 147.0  |
| -6     |        | 59.6   |
| -5     | 129.8  | 21.7   |
| -4     | 38.9   | 12.5   |
| -3     | 17.9   | 4.9    |
| -2     | 11.6   | 3.5    |
| -1     | 6.6    | 1.9    |
| 0      | 5.1    | 2.7    |
| 1      | 3.4    | 0.8    |
| 2      | 2.7    | 0.5    |
| 3      | 2.4    | 0.3    |
| 4      | 1.8    | 0.2    |
| 5      | 2.0    | 0.1    |
| 6      | 1.8    | 0.1    |
| 7      | 1.9    | 0.0    |
| 8      | 0.9    | 0.0    |
| 9      | 2.0    | 0.0    |
| 10     | 2.3    | 0.0    |
|        |        |        |

![](_page_28_Picture_2.jpeg)

Ratio=unused/used pixels
(between radii 230 & 250Å)
Ratio1: after fitting dimer
on i2
Ratio2 : after fitting dimer
on i2 and q2

![](_page_29_Picture_0.jpeg)

![](_page_29_Figure_1.jpeg)

Validation: Chemical Reasonableness Receptor recognition by Dengue virus

![](_page_30_Figure_0.jpeg)

\*Dendritic Cell Specific ICAM3 Grabbing Non-integrin;

Pokidysheva et al, Cell, submitted

Other problems: 1. Symmetry missmatches 2. Envelope of proteins whose structure is unknown

1. T4 phage 5-fold head symmetry, 6-fold tail symmetry

2. Yellow are the HOC molecules found by using a HOC<sup>-</sup> mutant

3. White are the SOC molecules found by using a HOC<sup>-</sup> SOC<sup>-</sup> mutant

![](_page_31_Picture_4.jpeg)

Fokine et al, PNAS, 2004, **101**:6003-6008

## Relevant references

Gao et al, Structure, 2005, **13**, 401-406. Hansen et al. Biophysics J., 2005, 88, 818-827. Navaza et al, Acta Cryst 2002, D58, 1820-1825. Roseman et al, Acat Cryst 2000, D56, 1332-1340. Rossmann et al, J. Struct Biol. 2001, **136**, 190-200. Volkmann et al, J. Sruct Biol. 1999, 125, 176-184. Wriggers et al., Structure 2001, 9, 779-788, Wriggers et al, J. Struct Biol 1999, 125, 185-189.

## Acknowledgements

#### **T4**

Petr Leiman, Victor Kostyuchenko, Paul Chipman, Shuji Kanamaru, Mark van Raaij, Andrei Fukin, Fumio Arisaka, V. Rao, Vadim Mesynanzhinov, Anthoni Battisti

#### **Dengue Virus**

Wei Zhang, Ying Zhang, Suchetana Mukhopadhyay, Elena Pokidysheva,

Glenn Gregorio, Shee-Mei Lok, Carol Bator-Kelly, Anthoni Battisti, Paul Chipman, Tim Baker, Wayne Hendrickson, Jim Strauss, Richard Kuhn

#### **Sindbis Virus**

Wei Zhang, Suchetana Mukhopadhyay, Sergei Strelkov, Tim Baker, Richard Kuhn

#### **Polio Virus**

Yongning He, Steffen Mueller, Carol Bator-Kelly, Valorie Bowman, Paul Chipman, Eckard Wimmer, Richard Kuhn

#### **Program development**

Chuan (River) Xiao, Ricardo Bernal