

National Resource for Automated Molecular Microscopy http://nramm.scripps.edu

Automation I: Data Collection

Clint Potter

NRAMM CryoCourse 11/2005

NRAMM CryoCourse November 2-10, 2005

Automated Molecular Imaging Group:

Jim Pulokas

Denis Fellmann

Joel Quispe

Anchi Cheng

Scott Stagg

Craig Yoshioka

Gabriel Lander

Satya Mallick

Christian Suloway

Jill Krawczyk

Bridget Carragher

Clint Potter

Phil Mercurio

SCRIPPS RESEARCH INSTITUTE

THE

Step 1 Sample Requirements

0.6 or 1.6ml Eppendorf Tubes

•Clean Preparation

•Protein concentration at or above 1 mg/ml.

•Buffer and salt concentration below 100mM.

•Biological pH range.

•No glycerol. If not possible, can it be dialyzed out and how long is the protein stable?

•Low concentration of sugar(s), less than 50mM.

•Low concentration of detergent(s).

 \bullet 50–100 μl of sample + 1–5 mls of dilution buffer.

Step 2

Step 3 Examine Map

Step 4 Structure Determination

Why do we need automation in molecular microscopy?

Multiple conformational states

lots of experiments

Low SNR Need averaging

lots of data

Systematic evaluation and improvement of techniques

lots of luck

Screening trials

lots of patience

Challenging technique

lots of skill

Automated Pipeline for Molecular Microscopy

Specimen Screening :

Crystallization Screening Trial

Screen: 6 lipids x 8 conc., x 4 time pts = 192 grids

Robotic screening

Stain not ice! Throughput goal: ~100 grids per day Potter, et al. JSB, 2004

2D Crystallization Screening Trials Screen: 6 lipids x 8 conc., x 4 time pts= 192 grids

Collaboration: Holly Heaslet and David Stout, TSRI

Helical Crystallization Screening Trial

Transferring data from cronus3...

🎄 🐥 🕸

Milligan, Sandy Schmid, TSRI

Specimen Preparation

http://cimbio.scripps.edu/misc/documentation/protocol/freeze.php

Plasma cleaner

Vitrobot

New technique for making an array of holey carbon film

• Use a silicon-nitride template with regularly spaced wells. Developed by the Protochips Co. We are currently working with a template similar to the R2/4 from Quantifoil, but many different arrays and holes can me made.

• Make a carbon replica of the template using Victawet as a releasing agent.

Vitreous ice across JAHC's

Automated image acquisition: A mutiscale targeting problem

Grid		
2mm	X	2mm

Grid square ~500 squares/grid 20µm x 20µm

Hole ~50 holes / square 2μm x 2μm High mag image 4K CCD: ~6 / hole 0.5 μm x 0.5 μm

~25,000 holes / grid ~150,000 high magnification target areas / grid

Total dose allowed: ~10 e⁻/Å²

particle : ~20 nm

grid: ~2 mm

Southern California: ~200 km

Waldo (~2m) (1m) Accurate targeting across a magnification range of ~600 requires accurate and stable calibrations, precisely defined relationships between preset magnification settings, and well defined targeting parameters.

Calibrations:

Magnification/Pixel Size Dose rate Goniometer Image/beam tilts and shifts Focus Presets: Atlas Square Hole Focus Image

Calibrations: Magnification/Pixel Size @ Specimen

Calibration standards:

Crystals (catalase / TMV)

Diffraction gratings

Wrigley, N. G. The lattice spacing of crystalline catalase as an internal standard of length in electron microscopy. *J Ultrastruct Res* 24, 454-64 (1968).

Mag*I*Cal Standard

* Good catalase crystal prep protocol at http://www.itg.uiuc.edu under tech reports.

Example of calculating pixel size from known diffraction spot:

Given: TMV LL3 (23A) diffraction is 295 pixels from LLO. Filament has a length of 3072 pixels.

-> Pixel size at specimen= 23Å (295/3072)= 2.21Å Microscope Nominal Magnification Setting: 62,000X Camera pixel size is 24µm.

-> Measured magnification is 109,000X (24µm/2.21Å) Additional post magnification of ~1.7X due to camera extension flange.

Calibrations: Dose -> Beam Intensity

measured at the specimen dose in e⁻/Å² dose rate in e⁻/Å²/sec 1 amp = 6.25x10¹⁸ e⁻/s

Analytical Holder w/ Faraday Cup Screen Current

Measure dose rate from screen current: Dose rate ($e^{-}/Å^{2}/s$) = (K* B) / A

> $K = 6.25 \times 10^{18} \text{ e}^{-/\text{s}}$ B = beam current (amps) A = Area on screen (m²) B = C * (measured screen current) C = correction factor (1.04 on our T1)

Dose measurements are critical!!

FEI Compustage

Characterization of Goniometer Slew Rate

- Measured piecewise slew rate (nm/tick) over range of goniometer (CompuStage) using image cross correlation.
- Results: 18% periodic variation over range of goniometer.
- Slew rate for X and Y axis a function of position:

X axis (period = 61.9 mm)

Y axis (period =41.6 mm)

Goniometer Modeling: Results

- 2 CompuStages characterized with similar results.
- Slew rate for X and Y modeled with Fourier Series
- Validation: RMS error as a function of distance moved over range of goniometer:
- Pulokas et al., J. of Struct. Biology, 128, p.250-256 (2000)

Distance Moved (mm)

Calibrations: Gain Normalization and Flat Fielding of CCD camera

Calibrations: Gain Normalization and Flat Fielding of CCD camera

1. Constructing a grid atlas (~60x) and targeting "good" squares

Full resolution

Atlas typically constructed of a mosaic of 25 images (180nm / pixel)

Dose accumulated: ~0 e⁻/Å²

2. Finding targets at low magnification (~600x)

TMV

Rhodopsin

RNA PollI

Connexin

3. Finding targets at intermediate magnification (~6000x)

<u>Hemocyanin</u>

Microtubules

Area of acquired image at ~60,000x on 4K CCD (~2 Å/pixel)

```
Dose: ~0.3 e<sup>-</sup>/Å<sup>2</sup>
```

4. Low dose drift check and focus

Drift check

Image1(time1) Image2(time2)

Image displacement

Image displacement(time) α (drift)

Focus and astigmatism measure

Image1(tilt1)

Image2(tilt2)

Ziese et al, J. Microsc. 211, 179 (2003) Koster and de Ruijter, Ultramicroscopy, 40, 89 (1992)

Image displacement

Image displacement(beam tilt) α (defocus)

Drift measurement using cross correlation

Typical drift tolerance: < 2 Å/s w/ 0.5 s exposure

Autofocus Technique:

Fig. 1. Schematic diagram of defocus D_0 and beam-tilt β induced image shift \vec{s} of the projection of an untilted specimen.

Determine defocus by measuring the image shift that is given by the cross correlation of two images acquired with different beam tilts.

 $S = D_{0*} \tan (B)$

Reference:

Koster and de Ruijter, Ultramicroscopy, 40, 89-107 (1992)

Ziese et al, J. Microscopy 211, 179-185 (2003)

Autofocus accurate to within ~150nm

Defocus = $2.1 + - 0.13 \mu m$

05may19a

5. High magnification images (~60,000x)

Acquired as defocus pairs or sequences

Total dose: ~ 10 e/A²

Leginon Observer Interface (LOI)

Leginon Database: Images and Acquisition Parameters - Multi-scale: Keeps track of relationships between scales.

Image Report: 04apr07a_00046grid_00	019sq_00005hole_00003efar.mrc - Microsoft Internet Exploi
F Created with HyperSnap-DX 4 To avoid this stamp, buy a license at Help	
http://www.hyperionics.com	rites 🐨 Media 🧭 🗗 🛥 🖾 🔻 🖻
Address 🙋 http://cronus3.scripps.edu/dbem/img	report.php?id=33287&preset=efar
General	
Filename: 04apr07a_00046grid_00019sq_00005hole	e_00003efar.mrc
Size: 513 kB	
Acquired: 2004-08-04 17:44:45	
Path: /ami/data04/leginon/04apr07a/	
Session: 04apr07a - PBCV-1, 25 mg/ml, 200kV, q	foil R2/4, blot 3.5 secs., good grid
Instrument: Tecnai 1 - Tecnai F2D and Gatan 4k	
Image Information	Mrc Header Information
imageld: 33287	nx: 512
preset: efar	ny: 512
dimx: 512	mode: MRC_MODE_UNSIGNED_SHORT
dimy: 512	alpha: 90
binning: 8	beta: 90
high tension: 200000 V	gamma: 90
mag: 62000	amin: 26886
defocus: -1.0000 µm	amax: 45680
pixelsize: 0.1791 nm	amean: 0.162334442139
	xorigin: 2.34128947419E-41
	yorigin: 35943.1914062
Parent Image Information	Image Relations
parentid: 33282	grid: 04apr07a_00046grid.mrc
parentimage: 04apr07a_00046grid_00019sq_00005	hole.mrc sq: 04apr07a_00046grid_00019sq.mrc
parentpreset: hole	hole: 04apr07a_00046grid_00019sq_00005hole.mrc
parenttype: acquisition	enr: 04apr07a_00046grid_00019sq_00005hole_00003enr.mrc
parentnumber: 3	foc: 04apr07a_00046grid_00019sq_00005hole_00001foc.mrc
targetx: 388	last: « back
targety: 165	
targetdim: 41.078715669086	
targetdiam: 58.094076824089	

Thumbnail

Data Tree view »

m⊕=