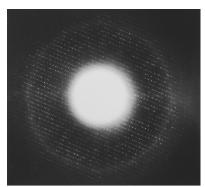

FUNDAMENTALS OF ELECTRON MICROSCOPY THEORY

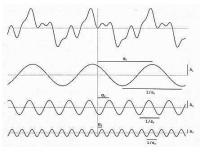
NRAM PRACTICAL COURSE NOV. 2-10, 2005 Bob Glaeser

THE ELECTRON MICROSCOPE HAS RECOGNIZABLE OPTICAL PARTS

- ELECTRON "GUN" [equivalent to a light source]
- CONDENSOR LENS
 SYSTEM
- SPECIMEN STAGE
- OBJECTIVE LENS
- "PROJECTOR LENSES"
 - FURTHER MAGNIFY THE IMAGE,
 - OR RELAY AN IMAGE OF THE DIFFRACTION PATTERN THAT IS PRODUCED IN THE FOCAL PLANE OF THE OBJECTIVE LENS


Reimer (1989) Transmission EM [Springer]

ELECTRONS REALLY ARE WAVES


- AND DIFFRACTION IS IMPORTANT IN EM

- Electrons produce diffraction patterns
 - just like those produced by x-rays
- Lens aberrations and defocus produce phase contrast
 - even though the intensity transmitted through the specimen is almost constant.
- Heads up electrons are also a flux of ionizing radiation ...

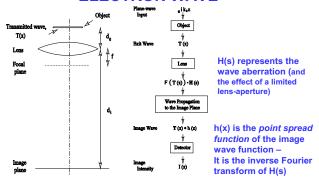
Electron Diffraction Pattern of Catalase


EACH SCATTERED BEAM IN THE DIFFRACTION PATTERN CONTRIBUTES A SINE-FUNCTION IN THE IMAGE

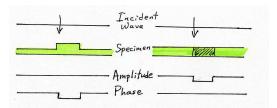
Chiu et al. (1993) Biophys J. 64:1610-1625

- Each sine-function has its own amplitude and phase
 - Larger scattering angles correspond to higher resolution
- The sine-functions add up to give a complicated function
- e.g. the image of a molecule
- Crystals help to explain these concepts
 - but everything remains the same when there is no crystal

THE SCATTERED ELECTRON WAVE FUNCTION IS THE FOURIER TRANSFORM OF THE TRANSMITTED ELECTRON WAVE



ABBE'S THEORY OF IMAGE FORMATION


APPLIES TO ELECTRON WAVES JUST AS IT DOES TO LIGHT

- The scattered wave is the Fourier transform of the wave function transmitted through the object
- The lens of a microscope inevitably applies some aberration function, H(s), to the scattered wave
- The wave function in the image is the INVERSE operation (inverse Fourier transform)
 - But now the inverse step is applied to the aberrated wave function, so the result is not the same as the original, transmitted wave
- The image intensity is the square of the image wave function

THE IMAGE WAVE IS THE INVERSE FOURIER TRANSFORM OF THE SCATTERED (AND ABERRATED) ELECTRON WAVE

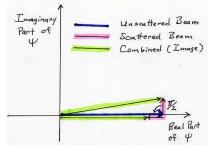
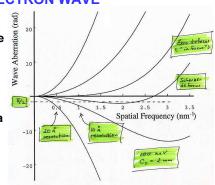


IMAGE CONTRAST REFLECTS CHANGES IN BOTH THE PHASE AND THE AMPLITUDE OF THE ELECTRON WAVES

- A SPECIMEN IS A PURE <u>PHASE OBJECT</u> IF THE TRANSMITTED AMPLITUDE IS CONSTANT BUT PHASE IS NOT
- A SPECIMEN IS A PURE <u>AMPLITUDE OBJECT</u> IF THE TRANSMITTED PHASE IS CONSTANT BUT AMPLITUDE IS NOT
- REAL OBJECTS ARE ALWAYS MIXED, BUT AMPLITUDE CONTRAST IS VERY WEAK IN CRYO-EM SPECIMENS

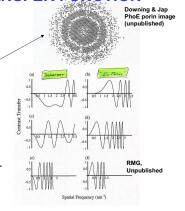

PHASE-CONTRAST OBJECTS REQUIRE A $\pi/2$ PHASE SHIFT TO BE SEEN

- THE SCATTERED BEAM GIVES NO CONTRAST FOR A PHASE OBJECT BECAUSE IT IS π/2 OUT OF PHASE
- APPLYING AN ADDITIONAL 7d2 PHASE SHIFT CAN THUS PRODUCE CONSIDERABLE CONTRAST

DEFOCUS AND SPHERICAL ABBERATION CHANGE THE PHASE OF THE SCATTERED ELECTRON WAVE

- Defocus and spherical aberration combine to change the phase
 - just as happens in the phase-contrast light microscope
- The "wave aberration" is not a uniform 90-degree phase-shift as it is in the Zernicke phase-contrast microscope, however

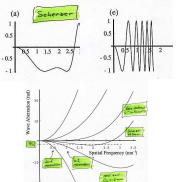
 $H(s) = \exp i\{\gamma(s)\}, \text{ and } \gamma(s) = 2\pi [C_a \lambda^3/4 \ s^4 - \Delta Z \lambda/2 \ s^2]$


PHASE CONTRAST IS USUALLY DESCRIBED IN TERMS OF A CONTRAST TRANSFER FUNCTION

- THE FOURIER TRANSFORM OF THE IMAGE INTENSITY IS PROPORTIONAL TO

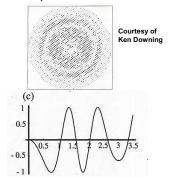
 Signature (CT. Labiacet)

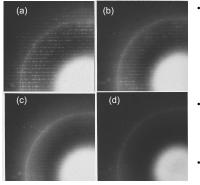
 CT. Labiacet)


 (CT. Labiacet)
 - Sin γ (s) {FT [object]} SIN γ (s) is itself the F
- SIN γ(s) is itself the FT
 of a point spread
 function for the image
 <u>intensity</u>, which is
 derived from h(x)
 mentioned in slide #7

ONE IS TEMPTED TO USE HIGH DEFOCUS VALUES BECAUSE LOW RESOLUTION IS ALL THAT ONE CAN SEE BY EYE

- WHILE HIGH DEFOCUS MAKES IT POSSIBLE TO SEE THE OBJECT, IT ALSO CAUSES RAPID OSCILLATIONS
- THE RAPID CONTRAST REVERSALS ARE DUE TO THE STEEP INCREASE IN


(s) $\sim \pi \Delta Z \lambda s^2$


IMAGES LOOK "ROUGHLY" LIKE A PROJECTION OF THE OBJECT

COMPUTATIONAL RESTORATION IS NECESSARY FOR QUANTITATIVE WORK, HOWEVER

- ONE MUST FIRST LOCATE THE "ZEROS" IN THE CTF
 - THEY ARE APPARENT IN THE FOURIER TRANSFORM OF THE TUBULIN CRYSTAL ON THE RIGHT
 - THEY ARE SIMILARLY APPARENT IN AREAS WITH AMORPHOUS CARBON. etc.
- SIMPLY CHANGE THE SIGN OF THE FOURIER TRANSFORM IN "EVEN" ZONES OF THE CTF
- BE AWARE THAT ASTIGMATISM INVALIDATES APPLICATION OF CIRCULAR SYMMETRY
- COMPENSATION FOR THE AMPLITUDE OF THE CTF AND THE ENVELOPE FUNCTION IS ALSO POSSIBLE DURING COMPUTATION

RADIATION DAMAGE: ELECTRONS ARE A FLUX OF IONIZING RADIATION

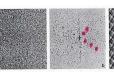
- Biological macromolecules are destroyed by radiation damage
 - Remember there is a one-to-one connection between spots in the scattered wave and sinefunctions in the image
- Images must thus be recorded with "safe" electron exposures
 - < 10e/A2 at 100 keV
 - < 20e/A2 at 300 keV
- Bubbling sets in at doses about 3X higher than that

SAFE ELECTRON EXPOSURES RESULT IN INSUFFICIENT STATISTICAL DEFINITION OF HIGH-RESOLUTION FEATURES

ALBERT ROSE DETERMINED A QUANTITATIVE RELATIONSHIP BETWEEN FEATURE SIZE AND VISUAL DETECTABILITY:

 $dC > 5/(N)^{1/2}$

WHERE "N" IS THE NUMBER OF QUANTA PER UNIT AREA


- FEATURES SMALLER THAN 25A MAY NOT BE DETECTABLE FOR EXPOSURES AS LOW AS 25 e/A²
- THE ONLY WAY TO OVERCOME THIS LIMITATION IS TO AVERAGE INDEPENDENT IMAGES OF IDENTICAL OBJECTS

Rose (1973) Vision: human and electronic. Plenum

CRYSTALS MAKE IT "EASY" TO AVERAGE LARGE NUMBERS OF INDEPENDENT IMAGES

- AVERAGING CAN BE DONE IN REAL SPACE
- BUT IT IS EVEN EASIER TO DO IT IN FOURIER SPACE
 - INFORMATION ABOUT FEATURE On a Group in THE IMAGE THAT ARE PERIODIC MUST APPEAR IN THE DIFFRACTION SPOTS
 - NON-PERIODIC "NOISE" IS
 DISTRIBUTED UNIFORMLY AT
 ALL SPACIAL FREQUENCIES
 - YOU ELIMINATE MOST OF THE NOISE IF YOU USE JUST THE DIFFRACTION SPOTS TO DO AN INVERSE FOURIER TRANSFORM

Kuo & Glaeser (1975) Ultramicroscopy 1:53-66

AVERAGING A 100X100 ARRAY (i.e. 10⁴ PARTICLES) PROVIDES THE NEEDED STATISTICAL DEFINITION REQUIRED FOR ONE VIEW (PROJECTION) AT ATOMIC RESOLUTION

CRYSTALS ARE NOT NECESSARY

- ALIGN IDENTICAL PARTICLES IN IDENTICAL VIEWS BY CROSS CORRELATION
- CROSS CORRELATION WORKS BETTER, THE BIGGER THE PARTICLE IS
 - BECAUSE THERE IS "MORE MASS TO BE CORRELATED"
- PERFECT IMAGES WOULD PRODUCE ATOMIC RESOLUTION FROM ~12,000 PARTICLES AS SMALL AS Mr = 40,000
 - INCREASE BOTH FIGURES BY 100X IF C = 0.1 WHAT IT SHOULD BE [HENDERSON (1995) QUART. REV. BIOPHY.]
- COMPUTATIONAL ALIGNMENT IS EQUIVALENT TO CRYSTALLIZATION IN SILICO

MOST IMAGES CAPTURE ONLY 10% (OR LESS) OF THE SIGNAL THAT IS IN THE SCATTERED WAVE FUNCTION

- BEAM-INDUCED
 MOVEMENT IS
 THOUGHT TO BE THE
 CURRENT LIMITATION
- CONTRAST CAN BE
 OCCASIONALLY CLOSE TO
 "WHAT IT SHOULD BE"
 IN CURRENTLY RECORDED
 DATA, HOWEVER

Mitsuoka et al. (1999) J. Mol. Biol. 286:861-882

Res limit is 3.004

Res limit is 3.0

YONEKURA/NAMBA RESULT REQUIRED SELECTION OF PARTICLE-IMAGES THAT WERE MUCH BETTER THAN THE AVERAGE

EVEN "ROUTINE" CRYO-EM OF BIOLOGICAL MACROMOLECULES IS CURRENTLY BRILLIANT

- Chain-trace models by 2-D electron crystallography
- Accurate docking of atomic models of components into large, macromolecular complexes
- Whole-cell tomographic imaging at ~5 nm resolution

THE POWER OF SINGLE-PARTICLE, REAL-SPACE AVERAGING WILL ONLY KEEP GETTING BETTER

- Automated data-collection will make it trivial to collect data sets of 10⁵ to 10⁶ particles
- Computer speed is keeping up with the size of data sets and the demands of higher resolution (well, at least we are trying to make it so ...)
- SOMEONE is bound to solve the problem of beam-induced movement ... (and when that happens, watch out for what cryo-EM will be able to do!)