
  



  



  



  



  

A helical tube of virus head protein.  

The protein subunits can be seen clearly in some places but not others.

Although we see some regularities, they are not everywhere.

Is this simply a bad image?



  

Photographic image superposition (averaging) by Roy Markham.
The image is shifted and added to the original.



  

Superimposed images using Adobe Photoshop.

I used Markham’s lattice to determine how much to shift by.



  

How would I figure out the distance and direction to shift if 
there weren’t a guide?

1.  I could guess and pick the answer (image) that I liked best.

2.  I could try all possible shifts and pick out the image with the 
strongest features (measured objectively rather than subjectively).

The Fourier transform carries out the essence of method 2.



  

EM of catalase

Optical diffraction pattern weak and 
strong exposure.

(Erikson and Klug, 1971)



  
Bacterial rhodopsin in glucose Fourier transform of image.
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F(X)={sin(πaX)/(πX)

-a/2 a/2

1/a

The Fourier transform of a box.

f(x)=1 if –a/2<x<a/2
f(x)=0 otherwise

X →



  

Fourier transform of a constant.

f(x)=1 F(X)= δ(X)

0 X x



  

x=a

Fourier transform of a cosine wave.

f(x)=cos(2πx/a)

-1/a +1/a

F(X)=0.5[δ(X+1/a)+ δ(X-1/a)]

|

X→



  

Fourier transform of a Gaussian.

f(x)=exp(-πx2/a2) F(X)=a •exp(-πX2a2)

a 1/a X→
x→



  

-a a0-2a-3a 2a 3a

The Fourier transform of a lattice.

f(x)=…δ(x+a)+δ(x)+δ(x-a)…

-1/a 1/a0-2/a-3/a 2/a 3/a

F(X)=…δ(X+1/a)+δ(X)+δ(X-1/a)…

x→ X→



  

In 2D the transform of a row of periodically placed points is a set of 
lines.  This set of lines is perpendicular to the line joining the points.

d

f(x)

1/d

F(X)



  

In 3D, the transform of a row of points is a set of planes.  The 
planes are perpendicular to the line joining the points.

d

f(x)

1/d 

F(X)



  

In 3D, the transform of a plane of evenly spaced lines is a 
plane of evenly placed lines.  These lines in real space are 
perpendicular to the plane containing the lines in reciprocal 
space (and vice versa).

d

f(x)

1/d

F(X)



  



  

If   F(X)=FT[f(x)],  then  f(x)=IFT[F(X)]

where FT=Fourier transform & IFT=Inverse Fourier transform.

USE: If you can obtain the Fourier transform, F(X), of an object, 
you can regenerate the object itself.

This is the basis of x-ray crystallography and some 3D 
reconstruction algorithms.

1. Inverse Fourier transform:



  

FT[ a•f(x) ] = a•F(X)

2. Multiplication by a constant:

Special case:  FT[ -f(x) ] = -F(X) = F(X)•eiπ

USE: If you multiply the density by a constant, you multiply its 
Fourier transform by the same constant.

If you reverse the contrast of an object, you get the same transform 
except the phases are changed by 180º (Babinet’s principle).

Thus the phases obtained from images of negatively stained objects 
will differ by 180º from those of an ice-embedded object.



  

3.  The addition of two density distributions (objects):

FT[ f(x) + g(x)] = F(X) + G(X)

USE: The Fourier transform of a heavy atom derivative is equal 
to the Fourier transform of the protein plus the Fourier transform 
of the constellation of heavy atoms.  
This allows one to use heavy atoms to determine the Fourier 
transform of the protein if the transform of the heavy atom 
constellation can be deduced.



  

4. The Fourier transform of a stretched object:

FT[ f(ax) ] = F(x/a)

USE: If you stretch/magnify an object by a factor of a, you 
squeeze/demagnify its transform by factor of a.



  

5. Rotation of an object:

FT[ f{ x•cos(a) + y•sin(a), -x sin(a) + y •cos(a)}] = 
   F { X•cos(a) + Y•sin(a), -X sin(a) + Y •cos(a)} 

USE: If you rotate an object by an angle a, you rotate its 
transform by the same angle.



  

6. Fourier transform of a shifted object:

FT[ f(x-a) ] = F(X)•eiπaX

USE: If you shift an object by +a, you leave the amplitudes of its 
transform unchanged but its phases are increased by πaX radians = 
180ºaX degrees. 

The electron diffraction pattern is not sensitive to movement of the 
specimen since the intensities do not depend on phases.  Vibration 
of the specimen does not affect the electron diffraction patterns as it 
does the images.



  

7. The section/projection theorem:

FT[ ∫f(x,y,z)dx ] = F(0,Y,Z)

USE: The Fourier transform of a projection of a 3D object is equal 
to a central section of the 3D Fourier transform of the object.

An electron micrograph is a projection of a 3D object.

 Its transform provides one slice of the 3D transform of the 3D 
object.

By combining the transforms of different views, one builds up the 
3D transform section by section.

One then uses the IFT to convert the 3D transform into a 3D 
image.



  

8. The Fourier transform of the product of two distributions:

FT[ f(x)•g(x) ] = F(X) * G(X)

where * denotes convolution

USE: This is useful in thinking about the effects of boxing or 
masking off a particle from the background or in sampling a 
distribution (multiplying by a lattice).

We will look at some of its uses later on.



  

9. The transform of a real distribution:

If the complex part of f(x) is zero, then

F(-X) = F*(X)
where * indicates the complex conjugate.

USE: Thus, centrosymmetrically related reflections have the same 
amplitude but opposite phases (Friedel’s law).  

When calculating a transform of an image, one only has to 
calculate half of it.  The other half is related by Friedel’s law.



  

10.  Whatever applies to the FT also applies to the IFT.

USE: If the Fourier transform of a cosine wave is a pair of delta 
functions, then the inverse Fourier transform of a cosine wave 
is also a pair of delta functions.



  

Convolution of a molecule with a lattice generates a crystal.

Molecule = f(x)

lattice = l(x)

Set a molecule down at every 
lattice point.

f(x)*l(x)



  

What is the Fourier transform of a crystal?

A crystal is the convolution of a molecule, f,  with a lattice, l.

L(X) is a lattice, the reciprocal lattice.

Thus what one sees in the transform of a crystal is the transform of 
the molecule, but you can only see it at reciprocal lattice points.

FT[ f(x)*l(x) ] = F(X)•L(X)

To get the transform, multiply the transform, F, of the molecule times 
the transform, L, of the lattice.



  



  

What is the Fourier transform of a sampled (digitized) image?

A sampled image is the product of a molecule, f,  with a 
lattice, l.

L(X) is a lattice, the reciprocal lattice.

Thus what one sees is the transform of the molecule repeated at every 
reciprocal lattice point.

FT[ f(x)•l(x) ] = F(X)*L(X)

To get the transform, convolute the transform, F, of the molecule with 
the transform, L, of the sampling lattice.



  

unsampled image transform

finely sampled image convoluted transform

Nyquist
frequency



  

Since the transform extends infinitely in all direction, the 
convolution causes overlap of one transform with its neighbors.

This is called aliasing.

The problem can be appreciated if we more coarsely sample the 
molecule in the previous example.



  

finely sampled image convoluted transform

coarsely sampled image badly aliased example



  

Tricks to control aliasing:

1. In digitizing, use an aperture that is equal to the step size.

2. Remove any large steps in image density by

a. removing any gradient of density across the image,

b. floating the image,

c. and apodizing the edge of the image



  



  

collimating
lens

diffraction
lens

image

Fourier transform

pinhole

focusing
lens

Optical diffractometer

d d* = f λ
d = spacing on the  image

d* = spacing in the Fourier transform
f = focal length of the diffraction lens

λ = wavelength of light

One gets the intensities (amplitudes) only.  To get the phases, one needs to compute the FT.



  

Fourier transforms have both real and imaginary parts.

The real part:

FR(X=1/a) = Σf(x)•cos(360x/a)

The imaginary part:

FI(X=1/a) = Σf(x)•sin(360x/a)



  

One can turn the real and imaginary parts into amplitudes and phases.

Amplitude:

|F(X=1/a)| = (FR *FR + FI *FI )1/2

Phase:

α(X=1/a) = tan-1(FI /FR )



  

The discrete Fourier transform: what the computer does.

An image f(x) is sampled at a lattice of points spaced every ∆x 
giving us f(j ∆x ).  The image contains N pixels.

The transform is calculated at steps of 1/(N∆x):

FR[X=k/(N∆x)] = Σf(j∆x)cos(360jk/N)

FI[X=k/(N∆x)] = Σf(j∆x)sin(360jk/N)

where 0≤j≤N-1 and 0≤k≤N-1



  

The inverse of the discrete Fourier transform:

f(x=j∆x) = (1/N)  Σ {FR[k/(N∆x)]cos(360jk/N) + 

FI[k/(N∆x)]sin(360jk/N)}

where 0≤j≤N-1 and 0≤k≤N-1

Since f(x) can be exactly regenerated, no information is lost when 
determining F(X).



  

Sample calculation:

0121f(j∆x)
3210j

-2020FI(k/N∆x)
0004FR(k/N∆x)
3 = -1210k

-90-900phase
2024amplitude
3 = -1210k

Friedel’s law



  

What happens if we more finely sample the image?

Image f(x) is sampled at ∆x/2 instead of ∆x; 
it contains 2N instead of N pixels.

The transform is sampled at 1/(2N∆x/2) = 1/(N∆x); i.e. unchanged. 
 
However, since there are 2N instead of N steps, the resolution is twice 
as good.



  

What happens if we keep the same sampling step in the image 
but double the number of points (called padding)?

If the image f(x) is still sampled at ∆x, but now contains 2N instead 
of N pixels, the transform is calculated at steps of 1/(2N∆x) which 
is two times finer than before.

However, since there are twice as many steps but each step is half 
the size, the resolution is unchanged.

This trick of more finely sampling is useful when you want to 
interpolate data in the Fourier transform.



  


