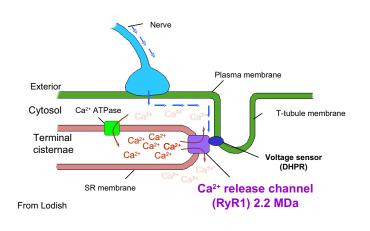


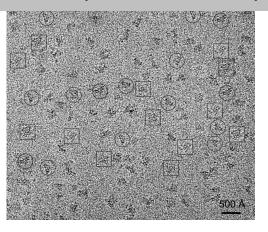
Research Mission at NCMI http://ncmi.bcm.tmc.edu

Development of Experimental and
Computational Infrastructure for
Near Atomic Resolution Structure
Determination of Large Macromolecular
Machines without Crystals by Electron
Cryomicroscopy

Molecular Cryo-EM

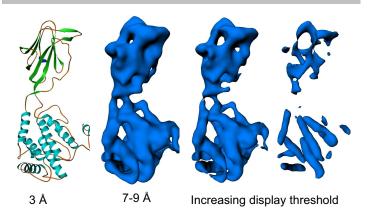

- What has cryo-EM achieved?
- · What are the trends in structural biology?
- What are the future developments in cryo-EM

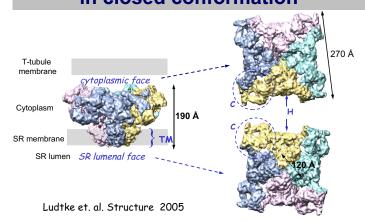
Cryo-EM Achievements


- 2-dimensional monolayer protein crystals: 3.5-1.9 Å polypeptide traced
- Helical arrays: 9 4 Å
 Fold recognized
- Single particles: 9 4.5 $\mbox{\normalfont\AA}$ $\mbox{\normalfont\uparticles}$ and $\mbox{\normalfont\uparticles}$ sheets visualized
- Subcellular assemblies within a cell: 60 Å identify components and domains

Structure at Different Resolutions Low Resolution Intermediate Resolution High Resolution 15+ A 9 A 6 A 3 A Backbone trace Shape Subunit Beta sheets

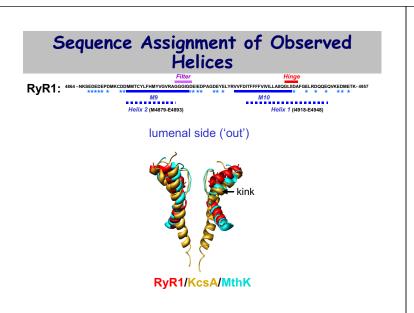
Excitation Contraction Coupling in Skeletal Muscle

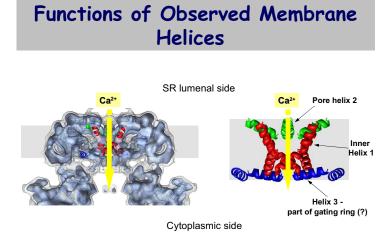

Electron Image of Ca⁺² Release Channel (2.2 MDa Tetramer)

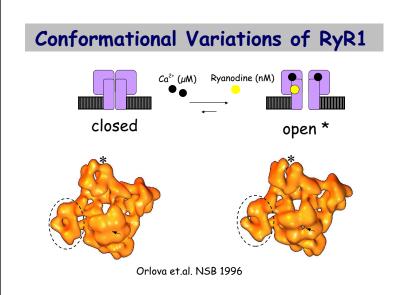

Data Statistics

- · Channel in closed conformation, [Ca 2+]<10nM
- JEOL2010F: 200 kV, ~82,800X, -175°C
- · Electron dose ~15 e/Å
- Defocus range: 1.6 4.1 μ m
- · ~700 CCD images/ 29,000 particle images
- Density map at 9.6 Å based on 0.5 FSC criterion

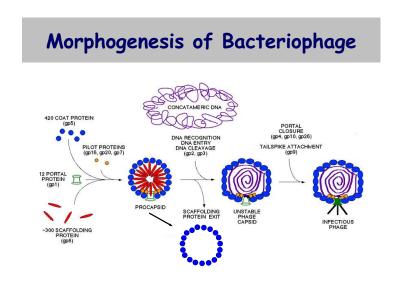
Display of Structure at Medium Resolution

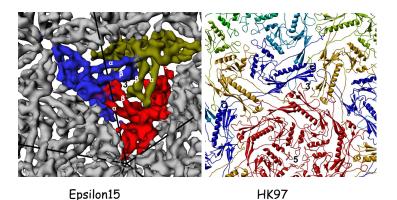

Structure of Ca⁺² Release Channel in closed conformation

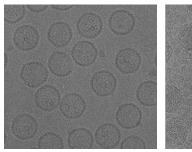


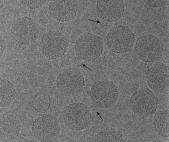


Steve Ludtke, Irina Serysheva, Susan Hamilton, BCM

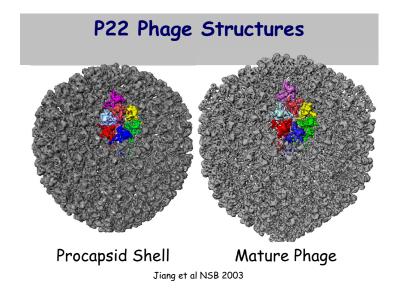

Sequence Assignment of Observed Helices Filter Hinge RyR1: 4864-NKSEDEDEPDMKCDDMMTCYLFHMYVQVRAGGGIGDEIEDPAGDEYLYRWFDITFFFFVILLAIGGLIDAYGELROAGEOWKEDMETK-4857 M9 M10 Helix 2 (M4879-E4833) Helix 1 (14918-E4948) Filter KCSA: 36-QLITYPRALWWSVETATTVGYGDLYPVTLWGRCVAVVVMVAGITSFGLVTAALATWFVGREQ-119 Pore helix Hinge MthK: 45-SWTVSLYWTFVTIATVGYGDVSPSTPLGMYFTVTLUVGIGTFAAVERLLEFLINREQ-103 Pore helix Helix 1 Helix 2 Helix 2 Helix 1 Inner helix Filter Pore helix Inner helix MthK



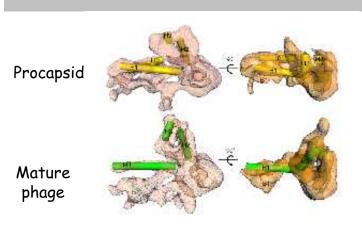


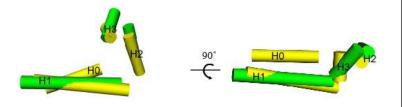

Peter Weigele, Jonathan King (MIT)

Common Types of Molecular Interactions in Capsid Shell


Images of Bacteriophage P22

Procapsid shell Diameter = 585 Å

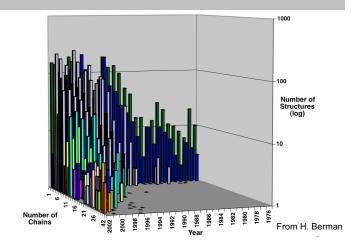

Mature phage Diameter = 700 Å



Wen Jiang, Zongli Li, Zhi Zhang, Mat Baker (BCM)
Peter Prevelige (U Alabama)

Domain Movements

Helix Movements and Refolding


- Helices 1 and 2 < 6° change
- · Helices 3 47° rotation
- · Helix h0 becomes coil

Mature Procapsid

Summary: Cryo-EM of Single Particles

- Locations of secondary structure elements of molecular components in a biological machine
- Pseudo atomic models of molecular components
- Structural conformation switches at different functional/chemical states
- Structural mechanism of biological function

Trend in PDB Structures

Frontiers in Cryo-EM

Atomic model of machine without using crystals

New instrumentation Novel data processing algorithms Biochemical sample purification

JEM2010F

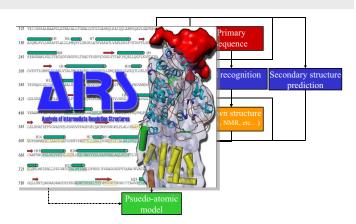
JEM3000SFF

Wen Jiang, Joanita Jakana, Juan Chang (BCM)
Peter Weigele, Jonathan King (MIT)

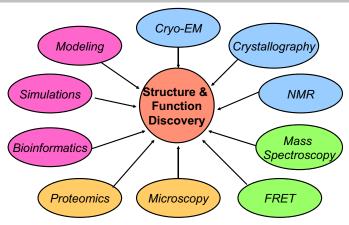
Frontiers in Cryo-EM

- Atomic model of machine without using crystals
- Dynamics and instability of machines
 Conformational heterogeneity
 Short life time

Frontiers in Cryo-EM

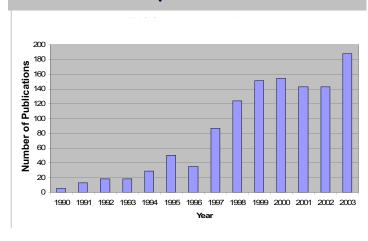

- Atomic model of machine without using crystals
- · Dynamics and instability of machines
- Combine cryo-EM data with other experimental and computational data

Integration with Bioinformatics


Modeling with cryo-EM restraints

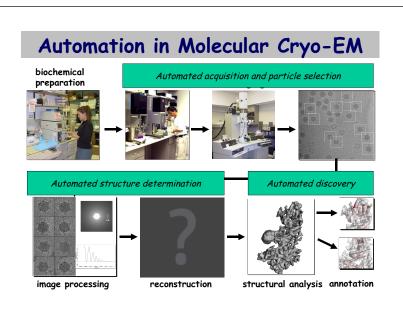
Integration of heterogeneous data type

Hybrid cryo-EM with Other Data

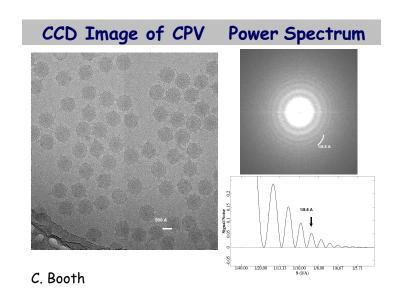

Data Integration

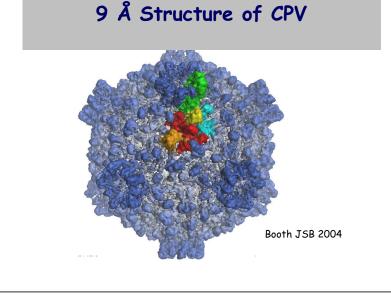
Frontiers in Cryo-EM

- Atomic model of machine without using crystals
- Dynamics and stability of machines
- Combine cryo-EM data with other experimental and computational data
- Archiving Cryo-EM structures
 Visualization and annotation


Trends in Cryo-EM Publications

Frontiers in Cryo-EM


- Atomic details of machine without using crystals
- · Dynamics and stability of machines
- Combine cryoEM data with other experimental and computational data
- · Archiving CryoEM structures
- CryoEM for the novice


Automated cryo-specimen preparation, data collection, image processing and structural interpretation

JEOL 2010F FasTEM +

Alpha Helices in CSP-A A C Booth

Research Frontiers in Cryo-EM

- Atomic details of machine without using crystals
- Dynamics and stability of machines
- Combine cryo-EM data with other experimental and computational data
- Archiving and disseminating cryo-EM structures
- · Cryo-EM for the novice
- Electron cryo-tomography of a whole cell

References

- Chiu, W., M.L. Baker, W. Jiang, M. Dougherty, and M.F. Schmid. 2005. Electron cryomicroscopy of biological machines at subnanometer resolution. Structure (Camb). 13:363-72.
- Jiang, W., and S.J. Ludtke. 2005. Electron cryomicroscopy of single particles at subnanometer resolution. *Curr Opin Struct Biol.* 15:571-7.
- Ludtke, S.J., Serysheva, II, S.L. Hamilton, and W. Chiu. 2005. The pore structure of the closed RyR1 channel. *Structure (Camb)*. 13:1203-11.
- Topf, M., M.L. Baker, B. John, W. Chiu, and A. Sali. 2005. Structural characterization of components of protein assemblies by comparative modeling and electron cryo-microscopy. J Struct Biol. 149:191-203.
- Dutta, S., and H.M. Berman. 2005. Large macromolecular complexes in the Protein Data Bank: a status report. *Structure (Camb)*. 13:381-8.

References

- Carragher, B., D. Fellmann, F. Guerra, R.A. Milligan, F. Mouche, J. Pulokas, B. Sheehan, J. Quispe, C. Suloway, Y. Zhu, and C.S. Potter. 2004. Rapid routine structure determination of
- rotter. 2004. Rapid routine structure determination of macromolecular assemblies using electron microscopy: current progress and further challenges. *J Synchrotron Radiat*. 11:83-5. Booth, C.R., W. Jiang, M.L. Baker, Z. Hong Zhou, S.J. Ludtke, and W. Chiu. 2004. A 9Å single particle reconstruction from CCD captured images on a 200kV electron cryomicroscope. *J Struct Biol.* 147:116-27.
- Baumeister, W. 2004. Mapping molecular landscapes inside cells. *Biol Chem.* 385:865-72.
- Jiang, W., Z. Li, Z. Zhang, M.L. Baker, P.E. Prevelige, and W. Chiu. 2003. Coat protein fold and maturation transition of bacteriophage P22 seen at sub-nanometer resolutions. *Nat Struct Biol* 10:131-135.
- Orlova, E.V., Serysheva, II, M. van Heel, S.L. Hamilton, and W. Chiu. 1996. Two structural configurations of the skeletal muscle calcium release channel. *Nat Struct Biol* 3:547-52.