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3D Reconstruction of Icosahedral Particles
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First 3D reconstructions of negatively-stained,
spherical viruses:

Human wart virus Tomato bushy stunt
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3D Reconstruction of Icosahedral Particles
REFERENCES

- Reference list available as handout

- For die-hards:

Baker, T. S., N. H. Olson, and S. D. Fuller (1999) Adding the third
dimension to virus life cycles: Three-Dimensional reconstruction of
icosahedral viruses from cryo-electron micrographs. Microbiol.
Molec. Biol. Reviews 63:862-922

NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

3D Reconstruction of Icosahedral Particles

Outline

- Background
- References; examples; etc.

- Symmetry
- Icosahedral (532) point group symmetry
- Triangulation symmetry

- “Typical” procedure (flow chart)

- Digitization and boxing

- Image preprocessing / CTF estimation
- Initial particle orientation/origin search

- Orientation/origin refinement

- 3D reconstruction with CTF corrections
- Validation (resolution assessment)

- Current and future strategies
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3D Reconstruction of Icosahedral Particles
REFERENCES
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General principles of 3DR method
- Fourier-Bessel mathematics

- Common lines
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3D Reconstruction of Icosahedral Particles
Outline

- Symmetry
Icosahedral (532) point group symmetry

- Triangulation symmetry
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3D Reconstruction of Icosahedral Particles
Symmetry

m=) 1. Tcosahedral (532) point group symmetry

2. Triangulation symmetry
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Regular Polyhedra

(Platonic Solids)

There are just five platonic solids:
From equilateral triangles  you can make T
with 3 faces at each vertex, a tetrahedron

with 4 faces at each vertex, an octahedron

with 5 faces at each vertex, an icosahedron

From squares you can make:
with 3 faces at each vertex, a cube

From pentagons you can make:
with 3 faces at each vertex, a dodecahedron

Icosahedral (532) Point Group Symmetry
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Icosahedral (532) Point Group Symmetry
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Icosahedral (532) Point Group Symmetry
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Icosahedron Dodecahedron

Different shapes, but both have 532 symmetry

12 vertices, 20 faces, 30 edges 20 vertices, 12 faces, 30 edges
(6 5-folds, 10 3-folds, 15 2-folds) (10 3-folds, 6 5-folds, 15 2-folds)

Asymmetric unit is 1/60" of whole object

Object consists of 60 identical ‘subunits’ arranged with
icosahedral symmetry
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Icosahedral (532) Point Group Symmetry

30 dimers 20 trimers 12 pentamers

From Eisenberg & Crothers, Table 16-3, p.767

3D Reconstruction of Icosahedral Particles
Symmetry

m=) 1. Icosahedral (532) point group symmetry

m=) 2. Triangulation symmetry

Purely mathematical concept (concerns lattices)

Real objects (e.g. viruses) with 532 symmetry often consist of
multiples of 60 ‘subunits’

‘Subunits’ arranged such that additional, local or pseudo-
symmetries exist
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3D Reconstruction of Icosahedral Particles
Triangulation Number

Key Concept:

T symmetry is incorporated into or
enforced by the 3D reconstruction algorithms

In other words: What you determine is the
structure of one asymmetric unit of the object
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3D Reconstruction of Icosahedral Particles
Outline

- “Typical” procedure (flow chart)

- Digitization and boxing

- Image preprocessing / CTF estimation
- Initial particle orientation/origin search

- Orientation/origin refinement

- 3D reconstruction with CTF corrections
- Validation (resolution assessment)
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3D Reconstruction of Icosahedral Particles
Triangulation Number

Key Concept:

T symmetry is incorporated into or
enforced by the 3D reconstruction algorithms

Hence, T symmetry emerges as a result of a
properly performed 3D reconstruction analysis
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3D Reconstruction of Icosahedral Particles

Two Basic Assumptions:

- Specimen consists of stable particles with
‘identical’ structures (else averaging is invalid)

- Programs test for and assume presence of
icosahedral (532) symmetry
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3D Reconstruction of Icosahedral Particles
Protocol
Electron Cryo-Microscopy

Sample : ~2-3 pl at 1-5 mg/ml
Specimen support: holey carbon film (1-2 pm) b’
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Protocol
Electron Cryo-Microscopy
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3D Reconstruction of Icosahedral Particles
Protocol
Electron Cryo-Microscopy

0

Sample : ~2-3 pl at 1-5 mg/ml

Specimen support: holey carbon film (1-2 um)

3D Reconstruction of Icosahedral Particles
Protocol
Electron Cryo-Microscopy

Sample : ~2-3 pl at 1-5 mg/ml

Specimen support: holey carbon film (1-2 um)

Microscope: 200-300 keV with FEG I! !
A

Defocus range: 1-3 pum underfocus %

il

Dose: 10-20 e/A? il ke

L i

Film: SO-163 (12 min, full strength) ﬁ .
0 o

Micrographs: 50-100-->1000s(?) =8 4

Particles: 10%-10*-->10°----> 108 (?)

Target resolution: 10 - 6 A --> 4A (?) FEI Teorhi F30 Polara

3D Reconstruction of Icosahedral Particles
Outline

- “Typical” procedure (flow chart)

- Digitization and boxing

- Image preprocessing / CTF estimation
- Initial particle orientation/origin search

- Orientation/origin refinement

- 3D reconstruction with CTF corrections
- Validation (resolution assessment)
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Icosahedral Particle Image Reconstruction Scheme
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Digitize Micrograph
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Icosahedral Virus 3D Reconstruction Scheme
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Resample
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Resolution Limits
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Expand
Data Set

Icosahedral Virus 3D Reconstruction Scheme

Digitize Micrograph

Pre-Process Images

Establish Refinement Criteria: |

Resample
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E Determine Origin and :
2 Orientation ( 8,@,0X,
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| Visualize & Interpret 3D Structure |

Icosahedral Virus 3D Reconstruction Scheme

Digitize Micrograph

Icosahedral Virus 3D Reconstruction Scheme

Digitize Micrograph
Box Particles

Icosahedral Virus 3D Reconstruction Scheme

Extracted

Icosahedral Virus 3D Reconstruction Scheme

Icosahedral Virus 3D Reconstruction Scheme




Icosahedral Virus 3D Reconstruction Scheme

Apodized

Icosahedral Virus 3D Reconstruction Scheme

Square mask; unfloated

Icosahedral Virus 3D Reconstruction Scheme

Icosahedral Virus 3D Reconstruction Scheme

Circular mask; unfloated

Circular mask; floated

Icosahedral Virus 3D Reconstruction Scheme

Circular mask; floated & apodized

Icosahedral Virus 3D Reconstruction Scheme




Icosahedral Virus 3D Reconstruction Scheme

Digitize Micrograph

Pre-Process Images
Remove blemish, Remove Gradient
Normalize means/variances, Apodize
Determine CTF parameters
Create Initial Parameter Files

Icosahedral Virus 3D Reconstruction Scheme

Create Initial Parameter Files

[ e waniowrato  misprey _err_parsprocoptions 1o

Icosahedral Virus 3D Reconstruction Scheme

Pre-Processmage:
Remove blemish(Remove Gr:
Normalize means/Varian
Determine CTF parameters
Create Initial Parameter Files

Dissls BT parisre options

i el 277

Icosahedral Virus 3D Reconstruction Scheme

Create Initial Parameter Files

Gradient
removed

Icosahedral Virus 3D Reconstruction Scheme

Determine CTF parameters
Create Initial Parameter Files

Gradient
not removed

Icosahedral Virus 3D Reconstruction Scheme

Create Initial Parameter Files

tes £ partproc  options

T[] el Dol ]




Icosahedral Virus 3D Reconstruction Scheme

Pre-Process Images
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Icosahedral Virus 3D Reconstruction Scheme

Extracted Masked

Floated Apodized

Icosahedral Virus 3D Reconstruction Scheme

Pre-Process Images
Remove blemish, Remove Gradient
Normat AMCesApedze

CTF parameters.
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Icosahedral Virus 3D Reconstruction Scheme

Pre-Process Images
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Pre-Process Images
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Icosahedral Virus 3D Reconstruction Scheme

Digitize Micrograph

Icosahedral Virus 3D Reconstruction Scheme

Digitize Micrograph

Box Particles
Pre-Process Images

Establish Refinement Criteria:
Resolution Limits

Box Particles
Pre-Process Images

Establish Refinement Criteria:
Resolution Limits

Determine Origin and
Orientation (_8,@.wx,

Icosahedral Virus 3D Reconstruction Scheme

Icosahedral Virus 3D Reconstruction Scheme
Orientation (8,@uX,

Goal: determine phase origin and view
orientation for each boxed particle

MOST IMPORTANT STEP?
> garbage out

Garbage in

Determine Origin and
Orientation ( 8.Q.uwx,

People who don't know which end is up

BPV Projections: Icosahedral ASU

Specifying Direction of View: (8,@,w) Orientation
Z(0,0)

< 5
- N
N
N

(80,-15) . ) "
5 \
Y

X (90,0)
Y (90,90)

Standard Setting




BPV Projections: 1/2 Icosahedral ASU

Icosahedral Virus 3D Reconstruction Scheme
Initial
3D Model
Orientation ( 8,@.uX,

How do we determine the (6, ¢ w, X, y) parameters?
Two methods:
1. Common lines
New or unknown structure
2. Model-based (template) matching

General features of structure are known or a crude
model can be generated

Icosahedral Virus 3D Reconstruction Scheme

Determine Origin and
Orientation (6,@.6X,

How do we determine the (6, ¢ w, X, y) parameters?
Two methods:
1. Ab initio (e.g. Common lines)
New or unknown structure

2. By guess and by golly

Icosahedral Virus 3D Reconstruction Scheme
Initial
3D Model
Orientation ( 8,@.wX,

How do we determine the (6, ¢ w, X, y) parameters?
Two methods:

1. Ab initio (e.g. Common lines)

New or unknown structure

2. Model-based (template) matching

General features of structure are known or a crude model can be
generated (...or, sometimes, even a lousy model will work)

Icosahedral Virus 3D Reconstruction Scheme

Orientation ( 6,@,wX,
Common Lines

The ‘gospel’ according to Tony Crowther (Phil. Trans. R. Soc. Lond.
B.(1971) 261:221-230)

“[Common lines] arise as follows:”

“An observed section of the transform intersects an identical
symmetry-related section in a line, along which the
transform must have the same value in both sections”

“The common line lies in the original section.”

“However, regarded as lying in the symmetry-related section
it must have been generated by the symmetry operation
from some other line in the original section.”

Icosahedral Virus 3D Reconstruction Scheme

Orientation ( 8,@.wX,
Common Lines
The ‘gospel’ continued:

“We therefore have a pair of lines in the original transform
plane along which the transform must have identical values”

“A similar pair of lines will be generated by each possible
choice of pairs of symmetry operations”

“The angular positions of these lines are dependent on the
orientation of the particle.”




3D O

Orientation Determination by Common Lines

bject 2D Projection
6,0w)

2D Fourier Transform

Orientation Determination by Common Lines
Simple example: object with single three-fold axis of symmetry

ABCD = 2D transform of image from
particle not viewed along an axis of
symmetry

Let Z-direction coincide with 3-fold axis
of symmetry

3-fold operation generates two additional
FT sections (only A'B'C’'D’ is shown)

Both planes have common values along
the line (1,2,3) of their intersection

Adapted from Moody (1990) Fig. 7.68,

n 2R

Adapted

n 2R

Orientation Determination by Common Lines

from Moody (1990) Fig. 7.68, Adapted from Moody (1990) Fig. 7.69, p.246

Orientation Determination by Common Lines

Original Transform Plane

Orientation Determination by Common Lines

Symmetry-Related
Transform Plane

Orientation Determination by Common Lines

Ok, that's easy (simple object with single 3-fold axis)
What about an object with 532 symmetry?
For a general view , icosahedral symmetry generates:

12

5-folds: 5 X 2 =12 pairs
3-folds: 2—20 x 1 =10 pairs
2-folds: 3—20 x 1 =15 real lines

37 common lines




Orientation Determination by Common Lines

Orientation Determination by Common Lines

(80,11)

What is (8,¢,w) for this particle?

Orientation Determination by Common Lines

(80,11,5)

Orientation Determination by Common Lines

Orientation Determination by Common Lines

(80,11,0)

Orientation Determination by Common Lines

(80,11,10)




Orientation Determination by Common Lines

w

|

(80,11,30)

Orientation Determination by Common Lines

(80,11,180)

Orientation Determination by Common Lines

Repeat process for all possible (8,¢,w) combinations

Orientation Determination by Common Lines

(80,11,90)

Orientation Determination by Common Lines

(80,11,w)

Metric: Identify w that gives lowest phase residual

Orientation Determination by Common Lines

> 250,000 combinations for 1°angular search intervals




Icosahedral Virus 3D Reconstruction Scheme

Orientation (8,@,uX,

Common Lines

The (6, ¢ &) that results in the lowest phase residual
is selected as the best estimate for the particle view
orientation

The ‘common lines’ procedure is similarly used to
determine the particle phase origin (X, y)

Not to worry....I'll spare you the details!!!

Icosahedral Virus 3D Reconstruction Scheme

Initial
3D Model
Orientation X,

Recall: two methods to determine (6, ¢ w, X, y):
1. Common lines

2. Model-based (template) matching
Bulk of structures now solved this way

Details discussed in practical session

PFTSEARCH Program Flowchart
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v (614
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‘ ' | “
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|
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4
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(o o)

Icosahedral Virus 3D Reconstruction Scheme

Initial
3D Model
S
Orientation (8,@.uX,
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Icosahedral Virus 3D Reconstruction Scheme

Digitize Micrograph

Pre-Process Images

Establish Refinement Criteria:
Resolution Limits

| Initial

3D Model
Determine Origin and
Orientation (6,@,cX,

Icosahedral Virus 3D Reconstruction Scheme

Digitize Micrograph

Pre-Process Images

Establish Refinement Criteria:
Resolution Limits

| Initial
3D Model

Determine Origin and
Orientation ( 6,@,0X,

Select Images




Icosahedral Virus 3D Reconstruction Scheme

Select Images

Goal: weed out ‘bad’ particle images before
computing 3D reconstruction

Icosahedral Virus 3D Reconstruction Scheme

Select Images
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1. 80,000, -13.201, 313,534, 48,751, 48,849, 1,015, 0,492, 0,713, 0,557
2. 85,000, 23,083, 49922, 49,387 48,423, 1.010, 0598, 0,725, 0,609
3, 77.000, 5,132, 334,688, 49,051, 48,364, 1.005, 0.728, 0,749, 0,616
4. 81,000, 5,062, 15.469, 49,215 49,138, 1.000, 0,718 0,778, 0.656
5. 81,000, 0,000, 1481359, 49,881 48,118, 1.005. 0725 0,712, 0,66
6. 79,000, -2,037, 333,203, 49,320, 48,202, 1.005, 0.746. 0,738, 0,647
7. 83,000, 1,008, 175.781, 49,223 48,802, 1.010; 0.687. 0,703, 0,620
8. 83,000, -3,023, 32.34d. d9.147. 48,301, 1.005. 0.658. 0,762, 0,574
9. 83,000, 1,001, 15.469, 49,843, 49,042, 1,005, 0,732 0,796, 0,662
10, 75.000; -7.247. 158,203, 47,869, 491199, 1,000 0,74d. 0.784. 0,622
11, 87.000, -7.010; 222891, 48.247. 481675, 1,000, 0,623, 0.765. 0,577

12, 86,000, -1.002, 19,688, 49,127, d8.761, 0,995, 0,784, 0.783, 0,607
13, 80l000; -5.077. 68.506, 48,997, 41623, 1,000, 0,720. 0.780. 0,600
000, 279,141, 49,449, 48,400, 1,000, 0,707, 0,761, 0,662
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Compute 3DR

Goal: combine only “good” particle images
to compute a 3D density map

Icosahedral Virus 3D Reconstruction Scheme

Compute 3DR
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Fourier ransform
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= Fourier ransform
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From Lake (1972), p.174
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Two dimensional
Fourier tronsform
= ——————

y Two dimensionol
)o‘« Fourier transform

Inverse three dimensional
Fourier transform
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Overallscheme: p € g € G < F

Icosahedral Virus 3D Reconstruction Scheme

Steps: z
1. Compute 2D FFT of each particle image

2. Combine all 2D FFTs to build up 3D
Fourier-Bessel transform

Central section

F(R,®2)

Crowther, DeRosier and Klug, 1970, p.329 Adapted from Crowther (1971) Fig. 4, p.223

Icosahedral Virus 3D Reconstruction Scheme

pegt G F
Steps:
1. Compute 2D FFT of each particle image

2. Combine all 2D FFTs to build up 3D Fourier-Bessel transform
3. Compute G,'s on each annulus G = (B B)'lB F

4. Compute g,'s from G_'s (Fourier-Bessel transform)

5. Compute polar density map (p(r,@z)) from g,’s

6. Convert from polar to Cartesian map ( p(r,@z) --> p(X,y,z) )

Icosahedral Virus 3D Reconstruction Scheme

Digitize Micrograph

Pre-Process Images

| Establish Refinement Criteria:

Resolution Limits | Initial
3D Model

Determine Origin and
Orientation ( 6,@,0X,

Select Images
Compute 3DR

Option: correct for CTF effects in particle FFTs before FFTs
are merged to form the 3D FFT
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Monitor Data Quality

Goal: assess resolution of 3D density map

to determine what to do next
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Select Images

| Even Images | | Odd Images |
| Compute ‘Even’ 3DR | | Compute ‘Odd’ 3DR |
| Mask ‘Even’ 3DR (r ,-r,) | | Mask ‘Odd’ 3DR (r ,-r,) |
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Select Images

| Even Images | | Odd Images |
| Compute ‘Even’ 3DR | | Compute ‘Odd’ 3DR |
| Mask ‘Even’ 3DR (r ,-r,) | | Mask ‘Odd’ 3DR (r ,-r,) |
FT FT

'0dd' SFs
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Select Images

| Even Images | | Odd Images |

|Compu!e‘Even’ 3DR | | Compute ‘Odd’ 3DR |

| Mask ‘Even’ 3DR (r ,-I,) | | Mask ‘Odd’ 3DR (r ,-r,) |

FT

‘Odd’ SFs

Compute and plot phase

differences and correlation

coefficients as function of
spatial frequency

1.0
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Monitor Data Quality
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Monitor Data Quality
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Note: quality of 3D density map is not identical
everywhere in the map
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Monitor Data Quality
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Monitor Data Quality
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Monitor Data Quality
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B Icosahedral Virus 3D Reconstruction Scheme
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24 3D Reconstruction of Icosahedral Particles
88
Outline
\§ Resample
Data? Pre-Process Images
|
Establish Refinement Criteria:
H Resolution Limits
£
2 Determine Origin and
T Orientation ( 8,@.wx,
©
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} Refine CTF_ 1 - “Typical” procedure (flow chart)
- Digitization and boxing
- Image preprocessing / CTF estimation
- Initial particle orientation/origin search
N Refine?

Y
| Visualize & Interpret 3D Structure |

- Orientation/origin refinement
- 3D reconstruction with CTF corrections
- Validation (resolution assessment)

NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

3D Reconstruction of Icosahedral Particles
Outline

- Current and

NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

3D Reconstruction of Icosahedral Particles

Current and Future Strategies

- Parallelization and new algorithms

- “Parallel” versions of EM3DR, PFTSEARCH, OOR

- EM3DR ---> P3DR

> POR

- Automation

- Semi-auto boxing (RobEM)

- Automated origin/orientation refinement (AUTO3DEM)

- Split data set processing

- Divide image data at very beginning and refine ‘even’ and ‘odd’ data
independently.

- Minimizes (eliminates ?) bias in resolution assessment

- Combine independent reconstructions to obtain ‘final’ 3DR with
highest S/N

NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)




Structure Determination Flow Chart

Initial model A ) Boxed particles __Initial model B

+
Search (6,9,wx,y)|
Select particles Select particles|

‘Compule new model Al—-lcheck resolutionHCompute new model B‘

Search (8,0wX,y;

)

—{Refine (6,0wx)

Select particles

Refine
Done ?

Y
Compute final map

NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

Digitize micrographs
Box particles

Data Flow for Split
Data Set Processing

Initial
3D Model

—F{ Orientation Search ‘

Initial
3D Model

‘ Orientation Search }‘— \
I

‘ Select ‘ [ Select ‘
1 '
‘ Compute odd map ‘ l Compute even map ‘
Check

resolution

N
SEARCH

Done
searching?

l

Refine (8,9,0x,y)

/

NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

3D Reconstruction of Icosahedral Particles

Current and Future Strategies
- Data selection

Trying to improve resolution by substantially increasing the number
of images averaged ad infinitum may prove less beneficial than
simply applying more rigorous quality control measures to weed
out ‘bad’ data.

Borgnia, M. J., D. Shi, P. Zhang and J. L. Milne (2004) Visualization of a-helical
features in a density map constructed using 9 molecular images of the 1.8 MDa
icosahedral core of pyruvate dehydrogenase. J. Struct. Biol. 147:136-145.
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