This material is provided for educational use only. The information in these slides including all data, images and related materials are the property of :

Dr. Richard Henderson

MRC Laboratory of Molecular Biology
Hills Road, Cambridge CB2 2QH, UK
Tel: +44 - (0) 1223-402215
Fax: +44 - (0) 1223-249565
Web: http://www.mrc-Imb.cam.ac.uk

No part of this material may be reproduced without explicit written permission.

The pdffiles of the lectures presented during the course are reproduced here with the kind permission of
Professor Henderson. This material is provided for educational use only. The information in these slides including all data, images and related materials are the property of Professor Henderson. No part of this material may be reproduced without his explicit written permission.

$$
\mathrm{T}=3
$$

$$
\mathrm{T}=4
$$

Bovine Complex I at $22 \AA$ (symmetry C1)

Grigorieff (1998) J.Mol.Biol. 277, 1033-1046

Clathrin at $22 \AA$ (symmetry D6)
Smith,Grigorieff,Pearse (1998) EMBO J. 17, 4943-5953

PDH

apoferritin
H^{+}-ATPase

β-galactosidase

$$
4
$$

$$
4
$$

$\mathrm{E} 1 \xrightarrow{\mathrm{IH}_{+}} \mathrm{I}_{\mathrm{H}^{+}} \mathrm{E} 1 \xrightarrow{\text { ATP }} \mathrm{I}_{\mathrm{H}^{+}} \mathrm{E} 1 \sim(\mathrm{P} \cdot \mathrm{ADP}$ Phosphorylation

Single particle approaches (Peter Rosenthal)

- Use of tilted pairs (absolute hand, parameter optimisation)
- Sharpening and signal-to-noise weighting

PARTICLE

 IMAGES

STARTING MODEL

4

23

E

6
 $+3$
 0
 5
 $+4$

 0
 8

TILT AXIS FOR EACH PARTICLE PAIR AFTER OPTIMIZATION

CALCULATED FROM $(\psi, \theta, \varphi)_{\text {tilt }}$ and $(\psi, \theta, \varphi)_{\text {untilt }}$

For two independent half sets of data

Cross-correlation $=$ Ctest
Ctest $=\Sigma(\mathrm{S}+\mathrm{N} 1)(\mathrm{S}+\mathrm{N} 2) / \Sigma\left(\mathrm{S}^{2}+2 \mathrm{SN}+\mathrm{N}^{2}\right)$

$$
=\mathrm{S}^{2} /\left(\mathrm{S}^{2}+\mathrm{N}^{2}\right)
$$

where $\mathrm{S}=$ signal and $\mathrm{N}=\mathrm{N} 1=\mathrm{N} 2=$ noise in half dataset

Comparing the full set of data to a perfect reference set
Cross-correlation $=$ Cref
Cref $=S^{2} /\left(\sqrt{ } S^{2} \cdot \sqrt{ }\left(S^{2}+N^{2} / 2\right)\right)$

$$
=\sqrt{ }\left(S^{2} /\left(S^{2}+N^{2} / 2\right)\right)=(2 \cdot \text { Ctest } /(1+\text { Ctest }))^{1 / 2}
$$

Therefore

When
$\mathrm{S}^{2}=\mathrm{N}^{2}$
Ctest $=0.500$ and Cref $=0.816=$ fom
When $\quad 6 S^{2}=N^{2}$
Ctest $=0.143$ and Cref $=0.500=$ fom

3667 particles

Acknowledgements

Adenovirus

Hepatitis B virus cores
Frealign, Complex I, Clathrin
H^{+}-ATPase

Pyruvate dehydrogenase
EM simulator

Adrian, Dubochet, Lepault \& McDowell
Böttcher, Wynne \& Crowther
Grigorieff, Smith \& Pearse
Rhee, Scarborough
Rosenthal, Milne, Subramaniam, Perham, et al
McMullen

