This material is provided for educational use only. The information in these slides including all data, images and related materials are the property of :

Florence Tama

Department of Molecular Biology The Scripps Research Institute 10550 North Torrey Pines Road La Jolla, CA 92037, USA Tel: (858) 784-9957 Fax: (858) 784-8688

No part of this material may be reproduced without explicit written permission.

NMFF: Flexible fitting of atomic structures into low-resolution EM maps using elastic network normal mode analysis

Florence Tama, Osamu Miyashita and Charles L. Brooks III

Flexible fitting

Growing number of low-resolution structure

Fitting of high resolution structure into low –resolution structure

Conformation between X-ray structure and EM map may be different => flexible fitting

Darst et al, PNAS, 2002, 99:4296

Flexible fitting

Allow domains to rotate/translate as rigid body

Division of protein is ad-hoc => may lead to different results

correlated motions betweendomains are not taken into account

=> Quantitative techniques with reproducible results

Development of a refinement program using Normal mode Analysis

Normal mode analysis: Theory

Potential energy => harmonic

Dynamics = harmonic potential independent

$$L = \frac{1}{2} \sum_{i=1}^{3N-6} \dot{q}_i^2 - \frac{1}{2} \sum_{i=1}^{3N-6} \omega_i^2 q_i^2$$

Normal mode analysis

Examples

Adenylate kinase: Mode 1 (2.95 cm⁻¹)

Examples

Adenylate kinase: Mode 1 (2.95 cm⁻¹) Cytochrome c: Mode 2757 (1519 cm ⁻¹)

NMA gives conformational changes

Adenylate Kinase =>

large conformational change upon ligand binding

1 normal mode can represent up to 80-90 % of the overall conformational change

Elastic network model

Atoms connected via elastic springs

$$E(r_a, r_b) = \frac{C}{2} (|r_{a,b}| - |r_{a,b}^0|)^2$$

 $E_p = \sum_{a,b} E(r_a, r_b)$

1 - Tirion MM (1996) Phys Rev Lett. 77, 1905-1908

Exploring conformational transitions using NMA

Selection of normal modes that may contribute to the transition

Normal Mode Flexible Fitting

Correlation coefficient: Maximization problem

Maximization of the correlation coefficient as a function of normal mode coordinate

Identification of the relevant normal modes

Steepest Descent /Newton Raphson

Gradient/Hessian

$$F_k = \frac{\partial \mathbf{c.c.}}{\partial q_k}$$

Correlation coefficient: Maximization problem

Near a maximum

Steepest Descent /Newton Raphson

Derivative of correlation coefficient by normal mode coordinates

F. Tama, O. Miyashita and CL. Brooks III. submitted

F. Tama, O. Miyashita and CL. Brooks III. submitted

F. Tama, O. Miyashita and CL. Brooks III. submitted

F. Tama, O. Miyashita and CL. Brooks III. *submitted*

F. Tama, O. Miyashita and CL. Brooks III. submitted

Validation of our approach

Deformation of the structure along NM

Lower resolution

Conformation 1 and 2 are superimposed by RMSD

Proteins studied

6.5 Å

Elongation Factor 2

Normal modes => elastic network

All-atoms are included

Starting from different orientation

EM Map and X-ray structure do not have the same orientation

Normal mode provides 3 rotations /3 translations modes

Rot/Trans modes can be included in the refinement

Fitting is improved: automatic adjustment of rotation/translation

Elongation Factor 2

Elastic Network enables multi-scale flexible fitting

Structures obtained are in good agreement with know structures (even at low resolution)

> Number of iteration step depend on the step size

If step size is too large

=> may lead to some distortion

small => take longer

$$E(r_a, r_b) = \frac{C}{2} \left(\left| r_{a,b} \right| - \left| r_{a,b}^0 \right| \right)^2$$

Coarse grained model

Reproduce well large conformational change of biological systems

Use $C\alpha$ atoms for fitting

i os unos, sy mente cie uneu				Thial KWISD (A)	
Initial structure	Atoms included	Resolution (Å)	Lactoferrin	EF2	Ca ²⁺ - ATPase
		10	0.8 (1.4)	1.8 (2.1)	4.3 (4.9)
	All atoms	20	1.1 (1.5)	2.1 (2.3)	5.0 (5.6)
RMSD fitted structure		30	1.4 (1.9)	2.6 (3.1)	5.0 (5.5)
		10	1.0	1.8	5.1
	$C\alpha$ atoms	20	1.3	2.2	4.7
		30	1.8	2.8	5.4
		10	0.9 (1.4)	2.1 (2.3)	4.5 (5.0)
Situs rigid body*	All atoms	20	1.0 (1.5)	2.2 (2.4)	4.9 (5.5)
		30	1.4 (1.8)	2.9 (3.0)	5.2 (5.7)
		10	1.2	1.9	4.8
	$C\alpha$ atoms	20	1.4	2.2	4.7
		30	2.0	2.6	5.2
Original RMSD (Å)			6.5	14.6	14.4

NMFF results/synthetic data

Final RMSD (Å)

Tests on experimental EM maps

Applications to experimental cryo-EM maps

1- Elongation Factor G bound to the ribosome (Valle *et al*. Cell **144**, 123 (2003))

2- E-coli RNA polymerase (Darst *et al.* PNAS **99**, 4296 (2002))

3 - Cowpea Chlorotic MottleVirus (swollen form) (Speir et al. Structure 3 63 (1995))

1 - Preliminary rigid body fitting

2- Flexible fitting

20 lowest frequency normal modes

Elongation Factor G bound to the ribosome

Resolution = 10.8 Å

Clamp motion

Cowpea Chlorotic Mottle Virus

Use $C\alpha$ atoms only

Resolution = 28 Å

Icosahedral symmetry imposed

Summary

Correlation Coefficient

System	Resolution (Å)	Before	After
EF-G	10.8	0.62	0.81
RNA polymerase	15	0.79	0.88
CCMV	28	0.31	0.87

All-atoms or $C\alpha$ atoms

NMFF uses mechanical properties of biological systems for the flexible fitting

Acknowledgements

Seth Darst (The Rockefeller University)

Joachim Frank (HHMI, Wadsworth Center)

Jack Johnson (TSRI)