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BASIC PRINCIPLES OF FOURIER
THEORY (M.F. Moody)

* Some history.

 What is a Fourier transform (F.T.)?
* Working with F.Ts.: 1D curves.

* Fourier analysis of 2D images.



Early History of Fourier Transforms

& Image Processing.
1810: Fourier invented * 1964: Klug & Berger used

F.Ts. for heat conduction optical diffractometer on
problems. electron micrographs.
1873: Abbe applied them + 1965: Cooley & Tukey re-
to image formation in the iInvented Fast Fourier
microscope. Transform (Gauss, 1805)

1939: Bragg applied them  for computers.
to X-ray crystallography. * 1968: DeRosier & Klug

1949: Lipson produced used computed F.Ts. for
them with the optical 3-D reconstruction.
diffractometer. « 1971: Erickson & Klug

used them for defocus
correction.



Optical Diffractometer
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WHAT IS A FOURIER
TRANSFORM (F.T.)?

* Fourier series of repeating (periodic)
curves.

» Curve represents light passing through
transparency: it has brightness and phase.

* Fourier transforms of non-repeating curves
(also with brightness and phase).



Periodic Curves & Fourier Series.
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Fourier Series is Reversible.
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« 3 peaks can reconstitute essentials of curve.
 Remaining “peaks” are just noise.
« Soignoring them = data-compression.



Representing Fourier Series.
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Representation when Curve has
Phase as well as Amplitude.

* Light wave has amplitude and phase.
« Optical diffractometer gives its F.T.
* This has negative as well as positive axis.




Fourier analysis of non-periodic curves.
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Repeating curve gives Fourier series with 4 peaks.
Take part of curve and repeat it with gaps between.
This gives Fourier series with more (& closer) peaks.
Increase size of gaps until only the central curve exists.
Then the “peaks” of the Fourier “series” are continuous.
This gives us the Fourier transform.



Fourier series and F.Ts.

Fourier series: real-space curve is continuous,
reciprocal-space Fourier series is discontinuous
(peaks).

Fourier transform: real-space curves is continuous,
reciprocal-space F.T. is also continuous.

Fourier transforms can be obtained in the optical
diffractometer.

But (strictly) neither the Fourier series nor the F.T. is
obtainable with a computer.



WORKING WITH FOURIER
TRANSFORMS (F.Ts.).

* Reversing F.Ts.

 Rules for 1D F.Ts.

 Examples of 1D F.Ts.
* Rules for 2D F.Ts.: the 3 pairs of rules.
« Examples of 2D F.Ts.



Reversing F.Ts.

« F.T. extends to infinity, so + How to reverse F.T.?
it needs truncation before . Simply take a second
reversing it. F.T., and then rotate it

« Quter parts relate to finer by 180 degrees.
details, so eliminate
details that are artefacts
or noise.



18t. Rule for 1D F.Ts.: Stretching.




2nd Rule for 1D F.Ts.: Addition.

Sum of Fourier components = (cleaned) O.D.
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= sum of F.T. peaks corresponding to each
Fourier component.



3. Rule for 1D F.Ts.:
Multiplication.

Multiplication by a constant -
multiplication of F.T. by a constant (follows

from addition rule).

Multiplication of 2 images - convolution
of 2 F.Ts.

This means that the first F.T. acts as the
“laser beam™ generating the second F.T.

Example when first F.T. = set of peaks:-



1D F.T. of infinite equidistant
peaks.
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1D Convolution.
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« Curve multiplied by infinite set of peaks, giving 9
peaks of “sampled” curve.

 F.T. gets convoluted by F.T.(peaks), i.e. by the
reciprocal set of peaks.




4t Rule for 1D F.Ts.: translation
(shift) only changes F.T. phases.

Moving an image doesn’t change it, so it still
needs the same component density-waves to
construct it.

Therefore translation (shift) doesn't affect F.T.
amplitudes.

Therefore the translation only changes the
phases of its component density-waves.

A high-frequency density-wave must move as far
as one of low-frequency; but its wavelength is
shorter, so its proportional shift (i.e. its phase-
shift) must be bigger.



Translating a single peak.

* Peak at origin needs
cosine waves of all

i frequencies, but same
l‘& ; — |
0o " 0 g amplitude.

» Peak shifted from origin
needs cosine waves with

T J‘L _v_“_\\_\iﬁ,m% phase proportional to
0 a0 0 1 frequency.



Translating an image.
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 F.T.: “rectangle” function.
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1D F.T.: “triangle” function.
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1D F.T.: Gaussian function.
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How much informationina F.T.?

F.Ts. are smooth functions, so they are
somewhat predictable.

By the scale theorem, the smaller an
image, the more stretched its F.T., so the
more predictable it is.

Being predictable, an F.T. carries a limited
amount of information per unit of
reciprocal space.

How limited is this information?



Sampling theorem.
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Lessons of sampling theorem.

 The F.T. of a curve of width D can be
rebuilt accurately from its values sampled
at points 1/D apart.

* Thus these few sampled values carry all
the information in the F.T.

 The F.T. of a curve of width D consists of
“lumps” of substantial amplitude that are
roughly 1/D in size.



Fourier analysis of 2D images.
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2D convolution.



2D F.Ts.: translation.
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2D F.Ts.: 3 pairs of rules.

ALGEBRAIC

Linearity

Convolution
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ISOMETRIC MOVEMENT

Rotation

Translation

DISTORTION

Scale

Projection
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2D F.Ts.: aline.
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2D F.Ts.: parallel lines.
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2D F.Ts.: Projection Theorem.
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2D F.Ts.: 3 pairs of rules.

ALGEBRAIC

Linearity

Convolution
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ISOMETRIC MOVEMENT

Rotation

Translation

DISTORTION

Scale

Projection

N "

/ q_|> multiply by

() \\\\\\rw:q:,.;/. Y

‘\ \\-‘Qﬂc..:‘r.i
NYNhw=sy Y



2D F.Ts.: aline.
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2D F.Ts.: parallel lines.
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square lattice.




